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1 Introduction

1.1 Motivation
Combinatorial surfaces capture essential properties of continuous surfaces (like spheres
and tori) in a discrete manner that lends itself more easily to a computational approach.
One way to obtain a combinatorial surface is by subdividing a continuous surface into
triangles, like in Figure 1.1.

Figure 1.1: Combinatorial surface ([53])

The shift from continuous surfaces to combinatorial ones has been very successful in
several areas of mathematics:

• In Algebraic Topology, the concept of homology was introduced to formalise the
notion of a “hole”. It is difficult to compute the homology for continuous surface
directly, but very easy for combinatorial ones. Thus, a basic approach is replac-
ing a continuous surface by a combinatorial one with the same homology. Then,
homology can be computed efficiently.

• Physics commonly deals with continuous surfaces, e. g. particle movement in a
surface according to a differential equation, or movement of the whole surface
under pressure.

7



Often, an analytical solution is not feasible or impractical, so one turns to numerical
ones. In numerical mathematics, continuous surfaces are replaced by combinatorial
ones, where the solution is feasible. Of course, solutions for the continuous and the
combinatorial surface differ, but this error can be controlled if the combinatorial
surface is a “good” approximation to the continuous one.

• In some cases, combinatorial surfaces are the most natural model. Consider paper
folding with several well–defined crease lines. Apart from those, the paper is flat.
Here, it is most natural to consider a crease line not as a set of many points, but
rather as a single element. We have shown in [10] that a combinatorial description
is sufficient to describe many properties of folding. For example, many “impossible
folds” are already impossible on the combinatorial level.

In all these examples, it is crucial that the combinatorial properties “preserve” aspects of
the continuous surface to pull back the computational results onto the continuous case.
Since the combinatorial properties are central, it makes sense to study them for their
own sake.

1.2 Main projects

The theoretical content of this thesis focusses on regularity aspects. Combinatorial sur-
faces are sometimes difficult to work with since they only have a very weak structure
(usually some kind of incidence relation). To obtain theoretical results, one often has to
impose further assumptions. A very strong one is regularity, i. e. each vertex is incident
to the same number of faces.

In this thesis, we transfer some results for regular surfaces to non–regular ones. There
are three main theoretical results: A differential–geometric perspective on nets of com-
binatorial surfaces, the construction of global invariants with an infinite regular ex-
tension, and the characterisation of geodesic self–dual regular surfaces. The fourth
main result is of a more practical nature, designing and implementing the GAP–package
SimplicialSurfaces ([13]) to perform computations with combinatorial surfaces. Most
concepts presented in this thesis are contained in the package.

1.2.1 Surface nets (Chapter 7)

Embeddings of combinatorial surfaces into some Rn (like in Figure 1.1) are often of inter-
est, in particular when the surface is constructed purely combinatorially. For simplicial
complexes, an embedding can be easily constructed if the dimension of the space is large
enough. For smaller dimensions (especially for R3, like in [16]) the problem becomes
much harder. We refer to [55] for an overview.

Thus, one is inclined to look at weaker notions. One of these is the representation as
a net in R2. For the octahedron, we have the net depicted in Figure 1.2. Clearly, some
of the labels appear multiple times. Similar to a net of the cube, these denote the same
vertex in the embedding into R3.
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Figure 1.2: Net of an octahedron

Although nets are commonly used in the depiction of cell complexes (compare [36,
page 5]), properties of these nets are rarely brought into correspondence with properties
of the combinatorial surface. One project of this thesis is to focus on this correspondence.

If we only consider nets with equilateral triangles, all of these triangles lie in the
infinite combinatorial surface induced by the hexagonal lattice (compare Figure 1.3).
Additionally, for each pair of edges with the same label, we store a symmetry of the

Figure 1.3: Excerpt from the hexagonal lattice surface

hexagonal lattice mapping one of them to the other. We call these maps transition
maps, similar to the coordinate transition maps in differential geometry.

The infinite hexagonal lattice, interpreted as a combinatorial surface, is regular and
has several nice properties: it is orientable and allows several “nice” edge–colourings.
Theorem 7.3.14 in Section 7.3 shows that a general combinatorial surface has one of
these properties if and only if it has a net whose transition maps preserve the properties
in the infinite surface.

In summary, we related properties of combinatorial surfaces with possible shapes of
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their nets, providing a good foundation for further research about these correspondences.

1.2.2 Surface modifications (Chapter 8)
Many combinatorial surfaces look quite similar and can be obtained from each other
by a sequence of rather simple changes (like changing an edge). We can exploit these
similarities by transferring structural understanding from one surface to the other. In
[27, Section 3.4], the modification “edge flip” is used to enumerate all triangulations,
and [39] gives an upper limit for the number of those modifications. Several different
modifications (that also preserve colouring) are presented in [40], together with several
interesting theoretical applications.

Another often studied modification is the vertex split ([35, D22, Subsection 7.8.3]),
illustrated in Figure 1.4. It can be used to construct large spherical triangulations from
the tetrahedron ([57] and [65]). In this thesis, we focus on their impact on combinatorial

Figure 1.4: Modification of a combinatorial surface

surfaces with a single boundary like the one illustrated in Figure 1.5. Given two of
these, we would like to know whether we can construct one from the other by using
vertex splits. In particular, we are interested in global invariants, i. e. properties that

Figure 1.5: Combinatorial surface with a single boundary

stay invariant under these modifications.
In Chapter 8, we construct several of these invariants by using the infinite regular

extension (Theorem 8.3.9 and Theorem 8.3.24). Conceptually, we extend the combina-
torial surface along its boundary, such that all newly constructed vertices are incident
to exactly six faces.
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Two combinatorial surfaces with different global invariants cannot be obtained from
each other by vertex splits. Thus, future work has to focus one combinatorial surfaces
with the same global invariants. Fixing these invariants gives the surfaces more structure,
so this seems to be a feasible approach.

1.2.3 Highly symmetric surfaces (Chapter 9)

Starting with the platonic solids, highly symmetric surfaces are often studied ([25]).
They are usually easier to work with than general combinatorial surfaces, which allows
construction and understanding of rather large examples. In addition, they often appear
in applications satisfying certain symmetries. Thus, classifying highly symmetric surfaces
is a worthwile endeavour.

Combinatorial surfaces where every vertex is incident to the same number of faces are
studied in [23] and [22]. But there are other symmetries to consider, like the duality of
swapping the roles of vertices and faces of a combinatorial surface. Surfaces that are
unchanged under this duality satisfy an external surface symmetry. The self–dual spher-
ical surfaces are classified in [4]. Actually, there are more external surface symmetries,
as shown in [71]. Naturally, there have been classifications of those surfaces that are
invariant under all of these operations ([3]).

In this thesis, we focus on self–duality with respect to a particular external surface
symmetry in [71], which we call geodesic duality. Theorem 9.6.1 in Chapter 9 charac-
terises the regular combinatorial surfaces that are unchanged under geodesic duality.

To do so, we identify the regular surfaces with certain subgroups of triangle groups,
and expand this correspondence to encompass geodesic self–duality.

Our characterisation is successful, but we do not achieve a full classification. In
particular in the infinite case, further research is necessary. This classification was also
submitted in [11].

1.2.4 Software implementation (Chapter 10)

Theoretical understanding does not arise from a vacuum. Depending on the field of study,
different aspects are more or less pronounced. In the field of combinatorial geometry,
the direct study of examples is a central aspect, both to generate and to test hypotheses.

Unfortunately, combinatorial surfaces can be difficult to handle on paper, as an inci-
dence geometry almost has to be written down relation by relation. Fortunately, this
work is cut out for a computer. Therefore, it is a natural choice to use software to study
combinatorial surfaces. For that reason, part of this thesis is writing a GAP–package
([33]) to handle computations with combinatorial surfaces.

The package SimplicialSurfaces ([13]) encodes combinatorial surfaces and several
common algorithms efficiently, allowing the user to focus fully on the underlying math-
ematical structure. Notable features include a library of surfaces that greatly facilitates
the testing of conjectures, and a flexible framework to build custom code for combina-
torial surfaces, allowing for a wide variety of different research. Chapter 10 gives an
overview of the package.
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In total, the package is very expansive and allows many different extensions of func-
tionality, depending on future research.

1.3 Chapter overview
The main results of this thesis are supported by a plethora of definitions and smaller
results. We summarise the contents of each chapter for convenience.

In Chapter 2, we define three different formalisms for combinatorial surfaces: polyg-
onal complexes, twisted polygonal complexes, and Dress surfaces. Each of these for-
malisms is useful in different circumstances, but the introduction of several formalisms
for “the same concept” leads to duplication of work. To ameliorate this, we follow a
categorical approach and define functors that convert between the formalisms. Then, we
introduce the abstractions of combinatorial complex (Definition 2.8.1) and combinatorial
properties (Definition 2.8.2) to de–emphasise the concrete formalism.

Chapter 3 is concerned with the graph–theoretical aspects of combinatorial surfaces. It
defines vertex–edge–graph and face–edge–graph, whose colourings correspond to certain
surface colourings. Via this correspondence, the literature on graph colourings is made
available for colourings of combinatorial surfaces.

To deal with boundary graphs of combinatorial surfaces, we develop a formalism for
cyclic graphs in Section 3.4 and generalise the concept of interval to the cyclic case.

In Chapter 4, degree and defect are introduced. We also develop the formalism of
extended combinatorial surfaces, allowing us to treat every surface with boundary as
subsurface of a larger combinatorial surface. In Section 4.3 we present the standard
correspondence between regular surfaces and certain subgroups of triangle groups.

Chapter 5 explores the topological aspects of combinatorial surfaces. It starts by
formally constructing the topological realisation of a combinatorial surface in our for-
malism. Then, Section 5.2 defines connectivity and strong connectivity. In particular,
it links combinatorial connectivity to connectivity of the topological realisation.

Section 5.3 defines orientation for combinatorial surfaces. In addition to this purely
topological concept, we develop dual orientation, which is a mostly combinatorial prop-
erty that is intimately linked with orientation.

Chapter 6 showcases several surface modifications and proves their formal correctness.
Chapter 7 introduces the hexagonal lattice, well–known in the literature. In Section

7.2, we develop a precise formalism for closed paths in the lattice. This allows us to
abstractly construct closed paths with certain properties.

1.4 Summary
This thesis explores four different aspects of combinatorial surfaces: nets, modifications,
classification, and implementation. In each of these topics this thesis contributes new
results and new software.

In addition to these, another important aspect of this thesis is the groundwork it has
laid. Specifically, it introduced several new methods of proof (like the construction of the
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infinite regular extension in Section 8.3) and there are several new perspectives offered
(like the differential–geometric perspective in Section 7.3). We hope that this has paved
the way for future research to explore these concepts.

1.5 Notation
In this section, we recall some basic concepts that are used throughout this thesis. A
general feature of this thesis are the “well–defined” environments that follow some of the
definitions. Similar to proof–environments, they contain a proof for the well–definedness
of the definition.

We sometimes have to round up or round down.

Definition 1.5.1. Let x ∈ R. Then,

dxe := min{k ∈ Z | k ≥ x}
bxc := max{k ∈ Z | k ≤ x}.

1.5.1 Set theory
We often refer to disjoint unions and power sets.

Definition 1.5.2. Let A and B be two sets. The disjoint union A ]B is the set

{(a, 1) | a ∈ A} ∪ {(b, 2) | b ∈ B}.

If the meaning is clear, we say a ∈ A ]B to refer to (a, 1) ∈ A ]B (similar for b ∈ B).

Next, we define the power set of a set, together with the set of all subsets with the
same cardinality.

Definition 1.5.3. Let M be a set. Its power set Pot(M) is the set of all subsets of M .
For k ∈ Z, we define

Potk(M) := {x ∈ Pot(M) | |x| = k}.

Another often used concept is the difference of sets.

Definition 1.5.4. Let A and B be sets. Their difference A\B is the set

{x ∈ A | x 6∈ B}.

We sometimes employ equivalence relations and equivalence classes, so we recall their
definitions here, together with the notation we are using.

Definition 1.5.5. Let M be a set. A relation ∼⊆M ×M is an equivalence relation
if it is

1. reflexive, i. e. m ∼ m for all m ∈M ,
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2. symmetric, i. e. m ∼ n implies n ∼ m for all m,n ∈M , and

3. transitive, i. e. m ∼ n and n ∼ p imply m ∼ p for all m,n, p ∈M .

If ∼ is an equivalence relation, the set {n ∈ M | n ∼ m} is the equivalence class of
an m ∈M , usually denoted [m] or [m]∼.

1.5.2 Group theory
At several points in this thesis, we employ group theory. We assume the reader is familiar
with the elementary definitions of group, subgroup, normal subgroup, group actions and
presentations.

Definition 1.5.6. Let M be a set. The symmetric group on M , denoted Sym(M),
is the group of all bijective maps M →M .

We often write the elements of the symmetric group in cycle notation. For M =
{1, 2, 3, 4, 5, 6}, the element (1, 2, 3)(5, 6) denotes the bijection

1 7→ 2, 2 7→ 3, 3 7→ 1, 4 7→ 4, 5 7→ 6, 6 7→ 5.

Definition 1.5.7. Let n ≥ 1. The dihedral group is the subgroup of Sym({1, . . . , 2n}),
generated by these bijections:

k 7→
{
k + 1 k < 2n
1 k = 2n

k 7→ 2n+ 1− k

Concerning group actions, we generally act from the left and denote the action of the
group element g on the element x by g.x.

We fix the notation for closure and normal closure.

Definition 1.5.8. Let G be a group and g1, . . . , gn ∈ G. The subgroup generated by
g1, . . . , gn is denoted 〈g1, . . . , gn〉. The normal subgroup generated by g1, . . . , gn is denoted
〈〈g1, . . . , gn〉〉 and called the normal closure

We write the presentation of a group in a similar fashion. For example, the dihedral
group of order 2n has the presentation 〈x, y | x2, y2, (xy)n〉.

Furthermore, we use the normaliser and the semi–direct product.

Definition 1.5.9. Let G be a group and U ≤ G a subgroup. The normaliser of U in
G is the subgroup

NG(U) := {g ∈ G | gUg−1 = U}.

We denote the semi–direct product by the symbol n.

Definition 1.5.10. Let N and H be groups, with a group homomorphism µ : H →
Aut(N). The semi–direct product H n N is the group with base set H × N and
product

(h1, n1) · (h2, n2) := (h1h2, µ(h1)(n1)n2).
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2 Definitions of combinatorial surfaces

2.1 Overview

The main focus of this thesis is combinatorial surfaces. One class of combinatorial
surfaces arises when considering the triangulation of a surface only combinatorially (that
is, we only care about the relation of its vertices, edges, and faces), this object is a
combinatorial surface. In such a triangulation, all faces are triangles, but we will often
use general polygons.

Figure 2.1: Triangulation of a sphere ([53])

In the field of combinatorial surfaces, it is quite easy to roughly point to the objects
that are studied (“just look at a picture!”). But to actually work with them, we need a
formal definition of these objects. This turns out to be harder than one initially thinks.
For example, consider this picture:
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We would like to have a formalisation of the object in the picture. To distinguish between
similar objects, we label them.

e6

e8

e9

e12

e13

e10

v2

v5

v3 v7

v11

f1 f4

A simple formalisation consists of the following data:

• A set V of vertices, a set E of edges, and a set F of faces.

In our example, we have the vertices V = {v2, v3, v5, v7, v11}, the edges E =
{e6, e8, e9, e10, e12, e13}, and the faces F = {f1, f4}.

• A transitive incidence relation ≺ between vertices, edges, and faces.

In our example, we have for example v3 ≺ e9 ≺ f4, but v2 6≺ e9.

• A non–degeneracy condition that forbids a vertex to be incident to a face twice.
In particular, a triangular face has exactly three vertices and three edges.

• Several properties that have to be fulfilled to make the incidence relation corre-
spond to our intuition about “surfaces”.

This leads to the concept polygonal surface (Subsection 2.5.2). It is a pretty simple
model and allows to formulate many statements.

Unfortunately, it fails for a few applications. Consider the following object, where the
edges are identified according to the coloured arrows.

16



In this object, there is only one vertex. This conflicts with the requirement that a
triangular face has three distinct vertices. Thus, this object cannot be modelled by a
polygonal surface. The solution is to consider chambers. For polygonal surfaces, they
could be defined as triples consisting of a vertex, an edge, and a face, all of which are
incident to each other.

In our example, we can start with the set of chambers:

1 2
3

45

6

7 8
9

1011

12

To be able to reconstruct the torus, we need to know which chambers are adjacent. This
can be done by involutions. If we define the surface completely by chambers and their
adjacencies, we obtain Dress–surfaces.

Since we sometimes want to consider more general objects than surfaces, we can also
combine the formalisms of polygonal surfaces and Dress–surfaces. This yields twisted
polygonal surfaces.

In the literature, there are many more formalisations of these objects, ranging from
triangulations ([49]) to combinatorial maps ([41] and [14]), including embeddings of
(three–regular) graphs ([17] and [18]). All of them point to similar phenomena, so it is
only expected that they agree on many of their implications.

Instead of introducing all of these theories and showing the correspondences, we focus
on the three formalisms of polygonal surfaces, twisted polygonal surfaces, and Dress–
surfaces. We show how these formalisms can be related to each other and which results
can be transferred.

17



2.1.1 Generalisations of surfaces
It is sometimes convenient to study objects that are a bit more general than combinatorial
surfaces, but still build from polygons. We work with two essential generalisations:
ramified edges and ramified vertices.

A ramified edge is an edge that is incident to at least three faces.

The definition of a ramified vertex is more involved. The detailed formalism will
be postponed until Subsection 2.5.2 (for polygonal surfaces) and Subsection 2.4.1 (for
twisted polygonal surfaces). To give a rough idea how a ramified vertex looks like,
consider these illustrations:

Polygonal complexes are the more general object compared to polygonal surfaces.
Likewise, twisted polygonal complexes generalise twisted polygonal surfaces. The concept
of Dress–surfaces cannot be generalised in this fashion since its definitions of vertices
and edges preclude ramifications of this kind.

2.1.2 Categorical overview
At this point, we already mentioned three different formalisms, together with two dif-
ferent specifications for some of them. Since this multitude of approaches can quickly
become overwhelming, we employ the language of category theory for an easier overview.

DressSurf

TwistPolySurf TwistPolyComp

PolySurf PolyComp

TriComp

SimpComp2
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In this overview, the new categories TriComp and SimpComp2 appear. TriComp
consists of all polygonal complexes with only triangles as faces. SimpComp2 consists of
simplicial complexes. As the image suggests, some triangular complexes can be described
as simplicial complexes. We call those vertex–faithful (compare Subsection 2.7.1).

2.2 Background: Category theory
In this section, we provide the essential definitions for our use of categorical language.
They can be found in almost all introductory textbooks, like [1] and [50]. In our presen-
tation, we mostly follow [1].

Definition 2.2.1. A category is a quadruple A = (O,hom, id, ◦) consisting of:

1. A class O, whose elements are called A–objects. It is usually referred to as ob(A).

2. For each pair (A,B) of A–objects, a set hom(A,B), whose elements are called
A–morphisms from A to B. We write f : A→ B instead of f ∈ hom(A,B).

3. For each A–object A, a morphism id : A→ A, called the A–identity on A.

4. A composition law associating with each A–morphism f : A → B and each
A–morphism g : B → C an A–morphism g ◦ f : A→ C.

They have to satisfy the following conditions:

1. Composition is associative.

2. A–identities act as identities with respect to composition.

3. The sets hom(A,B) are pairwise disjoint.

Definition 2.2.2. Let A be a category. A morphism f : A→ B is called isomorphism
if there is a morphism g : B → A such that f ◦ g = idB and g ◦ f = idA.

Definition 2.2.3. The category A is called subcategory of the category B if the fol-
lowing conditions are satisfied:

1. ob(A) ⊆ ob(B).

2. For each A,A′ ∈ ob(A), we have homA(A,A′) ⊆ homB(A,A′).

3. For each A–object A, the B–identity on A is the A–identity on A.

4. The composition law in A is the restriction of the composition law in B to the
morphisms of A.

If, additionally, homA(A,A′) = homB(A,A′) holds for all A,A′ ∈ ob(A), we call A a
full subcategory of B.
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We employ two main constructions to construct subcategories: Restriction of the
objects and restrictions of the morphisms.
Remark 2.2.4. Let A be a category.

1. Let S ⊆ ob(A). Then, (S, hom, id, ◦) is a full subcategory of A.

2. For all pairs A,A′ ∈ A, let HA,A′ ⊆ hom(A,A′) such that
•
⋃
A,A′ HA,A′ is closed under composition

• The identity on A is contained in HA,A.
Then, (ob(A), HS , id, ◦) is a subcategory of A, with HS(A,A′) := HA,A′.

To connect different categories, we need the concept of functor.
Definition 2.2.5. Let A and B be categories. A functor from A to B is a function
that assigns each object A ∈ ob(A) an object F (A) ∈ ob(B), and each A–morphism
f : A→ A′ a B–morphism F (f) : F (A)→ F (A′), such that

1. F (f ◦ g) = F (f) ◦ F (g), whenever f ◦ g is defined, and

2. F (idA) = idF (A) for all A ∈ ob(A).
Functors can also be restricted.

Remark 2.2.6. Let F : A → B be a functor between the categories A and B. Let A′
and B′ be subcategories of A and B, respectively. If

1. F (A′) ∈ ob(B′) for all A′ ∈ ob(A′) and

2. F (f) is a B′–morphism for each A′–morphism f ,
F restricts to a functor from A′ to B′.

Functors can have several nice properties.
Definition 2.2.7. Let F : A → B a functor.

1. F is called faithful if the induced maps on morphisms

homA(A,A′)→ homB(F (A), F (A′)) f 7→ F (f)

are injective.

2. F is called full if the induced maps on morphisms

homA(A,A′)→ homB(F (A), F (A′)) f 7→ F (f)

are surjective.

3. F is called essentially surjective if for any object B ∈ ob(B), there exists an
object A ∈ ob(A) such that F (A) is isomorphic to B.

4. F is called equivalence of categories if it is faithful, full, and essentially sur-
jective.

We note that essentially surjective functors are called isomorphism–dense in [1, Defi-
nition 3.33].

20



2.3 Category SimpComp2 of simplicial complexes
In the literature, there is no consensus about the definition of simplicial complexes. The
term can refer to

1. A strictly combinatorial object ([62, Section 3.1], [8, Chapter 12]), which is some-
times denoted as abstract simplicial complex ([47, Section 2.1]).

2. A collection of simplices (as subsets of Rn or a more general Euclidean space) that
satisfies certain intersection criteria ([59, Chapter 7], [61, Chapter 4], [63, Section
0.2], [60, Section 2.10]). In this case, the combinatorial object is sometimes called
a schema.

We will mostly concern ourselves with the first, strictly combinatorial definition.

Definition 2.3.1. Let V be a set and ∆ ⊆ Pot(V )\{∅}. Then, (V,∆) is a simplicial
complex if every non–empty subset of a set in ∆ is also contained in ∆.

It is called finite if V is finite and every element of ∆ is finite.

There are several different maps between simplicial complexes.

Definition 2.3.2. Let (V1,∆1) and (V2,∆2) be two simplicial complexes. We call a map
µ : V1 → V2 a

• simplicial morphism if x ∈ ∆1 implies {µ(v) | v ∈ x} ∈ ∆2.

• simplicial shadow morphism if x ∈ Pot(V1)\∆1 implies

{µ(v) | v ∈ x} ∈ Pot(V2)\∆2.

• simplicial twilight morphism if µ is both a simplicial morphism and a simplicial
shadow morphism.

A simplicial morphism µ is called dimension–preserving if for every x ∈ ∆1 we have
|x| = |{µ(v) | v ∈ x}|.

We can characterise simplicial shadow morphisms in a different way.

Remark 2.3.3. Let (V1,∆1) and (V2,∆2) be simplicial complexes. A map µ : V1 → V2
is a simplicial shadow morphism if and only if for every x ∈ Pot(V1) the implication

{µ(y) | y ∈ x} ∈ ∆2 ⇒ x ∈ ∆1

holds.

Proof. Given x ∈ Pot(V1) and µ(x) := {µ(y) | y ∈ x}, the following statements are
logically equivalent:

x 6∈ ∆1 ⇒ µ(x) 6∈ ∆2

⇔ ¬(x 6∈ ∆1) ∨ µ(x) 6∈ ∆2

⇔ ¬(µ(x) ∈ ∆2) ∨ x ∈ ∆1

⇔ µ(x) ∈ ∆2 ⇒ x ∈ ∆1
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Remark 2.3.4. A dimension–preserving simplicial twilight morphism between finite
simplicial complexes is injective.
Proof. Let µ : (V1,∆1)→ (V2,∆2) be the dimension–preserving simplicial twilight mor-
phism and consider x, y ∈ ∆1 with {µ(u) | u ∈ x} = {µ(v) | v ∈ y}. In particular, their
union {µ(u) | u ∈ x} ∪ {µ(v) | v ∈ y} also lies in ∆2. Since µ is a simplicial shadow
morphism, x∪ y ∈ ∆1. But, if x 6= y, then |x∪ y| > |x| = |{µ(u) | u ∈ x}|, which implies
that x ∪ y is mapped to a set of smaller cardinality.

Definition 2.3.5. Let (V,∆V ) be a simplicial complex and W ⊆ V . The simplicial
complex (W,∆W ) with ∆W := {x ∈ ∆V | x ⊆ W} is the induced subcomplex. The
map ιW : (W,∆W )→ (V,∆V ), v 7→ v is the natural inclusion.
Remark 2.3.6. Let (V,∆V ) be a simplicial complex and W ⊆ V . The natural inclusion
ιW : (W,∆W )→ (V,∆V ), v 7→ v is a simplicial twilight morphism.
Proof. Since ∆W ⊆ ∆V , the map ι is a simplicial morphism. Since ∆W = ∆V ∩Pot(W ),
we know x ∈ Pot(W )\∆W implies x 6∈ ∆V .

If some vertices do not lie in the image of a morphism, these images can be ignored.
Lemma 2.3.7. Let µ : (V1,∆1)→ (V2,∆2) be a simplicial (shadow/twilight) morphism.
For each W ⊆ V2 with µ(V1) ⊆ W there is a unique simplicial (shadow/twilight) mor-
phism ρ : (V1,∆1) → (W,∆W ) with ι ◦ ρ = µ, where ι is the natural inclusion from
Definition 2.3.5.
Proof. We have to show that the map ρ exists and that it is unique. From ι ◦ ρ = µ, we
deduce that v ∈ V1 has to be mapped to µ(v) ∈ W . This defines ρ uniquely. Next, we
have to show:
• If µ is a simplicial morphism, so is ρ.

• If µ is a simplicial shadow morphism, so is ρ.
If µ is a simplicial morphism, x ∈ ∆1 implies µ(x) ∈ ∆2 ∩ Pot(W ) = ∆W . If µ is a

shadow morphism, x ∈ Pot(V1)\∆1 implies µ(x) ∈ Pot(V2)\∆2. Since µ(x) ∈ Pot(W ),
we have µ(x) ∈ Pot(W ) ∩ (Pot(V2)\∆2) = Pot(W )\∆W .

Simplicial complexes form a category, but we focus on a more restricted set.
Definition 2.3.8. Let (V,∆) be a simplicial complex.
• Its dimension is maxx∈∆ |x| − 1.

• It is homogeneous if every simplex is contained in a simplex of maximal size.
Definition 2.3.9. SimpComp2 refers to the category of homogeneous simplicial com-
plexes with dimension 2, together with simplicial morphisms.
Well–defined. We have to check the properties of Definition 2.2.1.

Clearly, the identity morphism is a simplicial morphism and the composition of simpli-
cial morphisms (as maps) gives another simplicial morphism. The remaining properties
are trivially satisfied.
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2.4 Category TwistPolyComp of twisted polygonal complexes
This section describes the most general surface structure considered in this thesis, the
twisted polygonal complex. It consists of the following data:

• Sets of vertices V , edges E, faces F , and chambers C.

• Each chamber consists of a vertex, an edge, and a face, which is encoded by a map
λ : C → V × E × F . Geometrically, the chambers correspond to the barycentric
subdivision of the combinatorial surface.

• The involution σ0 : C → C encodes the adjacency of two chambers that lie in the
same polygon and differ only in their vertex.

• The involution σ1 : C → C encodes the adjacency of two chambers that lie in the
same polygon and differ only in their edge.

• To encode the adjacency of chambers only differing in their face, we cannot use an
involution since there might be more than two chambers satisfying these criteria
(if an edge is ramified). Thus, we employ an equivalence relation ∼ for this task.

We note that the images of σ0 and σ1 are not defined uniquely by our previous de-
scription. For example, consider the two–torus in Figure 2.2.

1 2
3

45

6

7 8
9

1011

12

f1

f2

e1

e3 e2 e3

e1

v v

v v

Figure 2.2: The two–torus as twisted polygonal complex

In this illustration, there is only one vertex v, the edges are {e1, e2, e3}, and the faces
are {f1, f2}. The chambers are represented by the integers from 1 to 12. Since σ0 and
σ1 encode adjacency, we can read them off from the picture:

σ0 = (1, 2)(3, 4)(5, 6)(7, 8)(9, 10)(11, 12)
σ1 = (1, 6)(2, 3)(4, 5)(7, 12)(8, 9)(10, 11)

But the chambers 1 and 2 have the same vertex, the same edge, and the same face.
Thus, the involution σ0 carries more information than encoded in the incidence.

In particular, it is possible that several vertices within a polygon coincide (for the
two–torus, all vertices coincide).
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Definition 2.4.1. A twisted polygonal complex is an 8–tuple (V,E, F,C, λ, σ0, σ1,∼)
such that:

• V is a set called vertices, E is a set called edges, F is a set called faces, C is a
set called chambers.

• The map λ : C → V × E × F is called flag map. Its projections are:

λ0 := ((v, e, f) 7→ v) ◦ λ λ01 := ((v, e, f) 7→ (v, e)) ◦ λ
λ1 := ((v, e, f) 7→ e) ◦ λ λ02 := ((v, e, f) 7→ (v, f)) ◦ λ
λ2 := ((v, e, f) 7→ f) ◦ λ λ12 := ((v, e, f) 7→ (e, f)) ◦ λ.

• σ0 : C → C is an involution without fixed points, such that λ12 = λ12 ◦ σ0.

• σ1 : C → C is an involution without fixed points, such that λ02 = λ02 ◦ σ1.

• ∼ is an equivalence relation on C, such that c1 ∼ c2 implies both σ0(c1) ∼ σ0(c2)
and λ01(c1) = λ01(c2). The equivalence class of c ∈ C is denoted by [c]∼.

• Two chambers c1, c2 ∈ C with λ1(c1) = λ1(c2) satisfy c1 ∼ c2 or c1 ∼ σ0(c2).

• Two chambers c1, c2 ∈ C with λ2(c1) = λ2(c2) satisfy c1 ∈ 〈σ0, σ1〉.c2.

Example 2.4.2. The two–torus (V,E, F,C, λ, σ0, σ1,∼) with

V = {v}, E = {e1, e2, e3}, F = {f1, f2}, C = {c1, . . . , c12},

and

λ : C → V × E × F, ck 7→



(v, e1, f1) k ∈ {1, 2}
(v, e2, f1) k ∈ {3, 4}
(v, e3, f1) k ∈ {5, 6}
(v, e1, f2) k ∈ {7, 8}
(v, e3, f2) k ∈ {9, 10}
(v, e2, f2) k ∈ {11, 12}

σ0 = (c1, c2)(c3, c4)(c5, c6)(c7, c8)(c9, c10)(c11, c12)
σ1 = (c1, c6)(c2, c3)(c4, c5)(c7, c12)(c8, c9)(c10, c11)
∼ : {c1, c7}, {c2, c8}, {c3, c11}, {c4, c12}, {c5, c9}, {c6, c10},

is a twisted polygonal complex that is illustrated in Figure 2.2.

Although incidence between vertices, edges, and faces is not part of Definition 2.4.1,
it can be reconstructed from the map λ.

Definition 2.4.3. Let (V,E, F,C, λ, σ0, σ1,∼) be a twisted polygonal complex. The re-
lation incidence ≺⊆ (V × E) ] (V × F ) ] (E × F ) is defined as follows:
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• For v ∈ V and e ∈ E, we have v ≺ e if λ01(c) = (v, e) for a chamber c ∈ C.

• For v ∈ V and f ∈ F , we have v ≺ f if λ02(c) = (v, f) for a chamber c ∈ C.

• For e ∈ E and f ∈ F , we have e ≺ f if λ12(c) = (e, f) for a chamber c ∈ C.

Remark 2.4.4. Let (V,E, F,C, λ, σ0, σ1,∼) be a twisted polygonal complex. Incidence
is a transitive relation.

Proof. The vertex v ∈ V is incident to the edge e ∈ E, if there is a chamber c1 ∈ C with
λ(c1) = (v, e, f̂) for some face f̂ ∈ F .

The edge e ∈ E is incident to the face f ∈ F , if there is a chamber c2 ∈ C with
λ(c2) = (v̂, e, f) for some vertex v̂ ∈ V .

Since λ1(c1) = λ1(c2), either c1 ∼ c2 or c1 ∼ σ0(c2) holds. In the first case, we conclude
from (v, e) = λ01(c1) = λ01(c2) = (v̂, e) that v = v̂, which leads to λ02(c2) = (v, f),
proving v ≺ f .

Otherwise, (v, e) = λ01(c1) = λ01(σ0(c2)). Combining this with (e, f) = λ12(c2) =
(λ12 ◦ σ0)(c2), we obtain λ(σ0(c2)) = (v, e, f).

Next, we define morphisms between twisted polygonal complexes. A morphism be-
tween two twisted polygonal complexes should consist of maps for vertices, edges, faces,
and chambers that are compatible with λ, σ0, σ1, and ∼. However, we want to enforce
an additional constraint: We would like to enforce that the number of vertices in a face
does not change under the morphism, e. g. a hexagonal face should not be mapped to a
triangular face.

Definition 2.4.5. A twisted polygonal morphism between the twisted polygonal
complexes (V 1, E1, F 1, C1, λ1, σ1

0, σ
1
1,∼1) and (V 2, E2, F 2, C2, λ2, σ2

0, σ
2
1,∼2) consists of

maps

µV : V 1 → V 2, µE : E1 → E2, µF : F 1 → F 2, µC : C1 → C2,

satisfying:

• λ–compatible: If λ1(c) = (v, e, f), then λ2(µC(c)) = (µV (v), µE(e), µF (f)).

• σ0–compatible: µC ◦ σ1
0 = σ2

0 ◦ µC .

• σ1–compatible: µC ◦ σ1
1 = σ2

1 ◦ µC .

• ∼–compatible: If c1 ∼1 c2, then µC(c1) ∼2 µC(c2).

• non–degenerate: The restriction of µC to λ−1
2 (f) is bijective for every f ∈ F .

We can reformulate the non–degeneracy condition.

Lemma 2.4.6. Let (V 1, E1, F 1, C1, λ1, σ1
0, σ

1
1,∼1) and (V 2, E2, F 2, C2, λ2, σ2

0, σ
2
1,∼2) be

two twisted polygonal complexes. If all orbits of 〈σ1
0, σ

1
1〉 are finite, we can replace the

non–degeneracy condition of Definition 2.4.5 by:
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• For any c ∈ C, we have |〈σ1
0, σ

1
1〉.c| = |〈σ2

0, σ
2
1〉.µC(c)|.

Proof. For any chamber c ∈ C, we have 〈σ0, σ1〉.c = λ−1
2 (λ2(c)). Since µC is compatible

with σ0 and σ1, it restricts to a map

〈σ1
0, σ

1
1〉.c→ 〈σ2

0, σ
2
1〉.µC(c).

We show that this map is surjective: Let x ∈ 〈σ2
0, σ

2
1〉.µC(c), then x = w(σ2

0, σ
2
1).µC(c),

where w(a, b) is a word in the free group generated by a and b. But then,

µC(w(σ1
0, σ

1
1).c) = w(σ2

0, σ
2
1).µC(c) = x.

Since the cardinality of both orbits is identical, this proves that µC induces a bijection
between them.

Definition 2.4.7. TwistPolyComp is the category formed from twisted polygonal com-
plexes and twisted morphisms.

2.4.1 Strong paths and twisted polygonal surfaces
In Section 2.4, we formalised twisted polygonal complexes. In this subsection, we re-
strict to those complexes that correspond to combinatorial surfaces. Like described in
Subsection 2.1.1, we have to avoid both edge ramifications and vertex ramifications.

It is relatively easy to define edge ramifications by counting how many faces are
incident to one edge. Unfortunately, we cannot rely on the incidence relation ≺, as the
following example shows:
Example 2.4.8. The one–cone (V,E, F,C, λ, σ0, σ1,∼) with

V = {v1, v2}, E = {e1, e2}, F = {f}, C = {c1, . . . , c6},

and

λ : C → V × E × F, ck 7→


(v1, e1, f) k ∈ {1, 6}
(v2, e1, f) k ∈ {2, 5}
(v2, e2, f) k ∈ {3, 4}

σ0 = (c1, c2)(c3, c4)(c5, c6), σ1 = (c1, c6)(c2, c3)(c4, c5), ∼ : {c1, c6}, {c2, c5}, {c3}, {c4}

illustrated by

c1

c2

c3 c4

c5

c6

f

e2

e1 e1

v1

v2 v2
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is a twisted polygonal complex.
There is a unique face, so every edge is incident to it. However, the sets λ−1

1 (e1)
and λ−1

1 (e2) have different cardinality, corresponding to the “intuitive” view in which e1
“looks like” an inner edge.

Therefore, we rely on λ−1
1 to distinguish between different types of edges.

Remark 2.4.9. Let (V,E, F,C, λ, σ0, σ1,∼) be a twisted polygonal complex.
For each e ∈ E, the set λ−1

1 (e) has an even number of elements.

Proof. Since σ0 restricts to an involution without fixed points on λ−1
1 (e)→ λ−1

1 (e), the
claim follows.

Definition 2.4.10. Let (V,E, F,C, λ, σ0, σ1,∼) be a twisted polygonal complex.

• e ∈ E is a boundary edge if |λ−1
1 (e)| = 2.

• e ∈ E is an inner edge if |λ−1
1 (e)| = 4.

• e ∈ E is a ramified edge if |λ−1
1 (e)| > 4.

In Example 2.4.8, the edge e1 is an inner edge, and the edge e2 is a boundary edge.
The central edge in

is a ramified edge.
The definition of vertex ramifications is more complicated. We want to avoid the

situations depicted in these pictures:

In order to do so, we need to be able to talk about “the surface around a vertex”. Since
this is a local consideration, it should be sufficient to only consider chambers in which
the vertex is contained. For a formal definition, we need the notion of strong paths.
These are sequences of adjacent chambers.

Definition 2.4.11. Let (V,E, F,C, λ, σ0, σ1,∼) be a twisted polygonal complex and c1 6=
c2 ∈ C. Then,

• c1 and c2 are 0–adjacent if c2 = σ0(c1).
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• c1 and c2 are 1–adjacent if c2 = σ1(c1).

• c1 and c2 are 2–adjacent if c1 ∼ c2.

c1 and c2 are adjacent if they are k–adjacent for at least one k ∈ {0, 1, 2}.

Definition 2.4.12. Let (V,E, F,C, λ, σ0, σ1,∼) be a twisted polygonal complex.
A strong path is a sequence (c1, c2, . . . , cn) ∈ Cn such that ci and ci+1 are adjacent

for all 1 ≤ i < n. A strong path is called closed if c1 and cn are adjacent. A strong
path is called non–repeating if ci 6= cj for 1 ≤ i < j ≤ n.

Our notion of a closed path differs from the usage in the graph theoretical literature.
The main reason for this is that we want to build a correspondence to a different sort of
paths later on (Lemma 2.5.22).

Example 2.4.13. Consider the two–torus from Example 2.4.2:
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v v
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The sequence (c2, c3, c4, c12, c7) is a non–repeating strong path.
The sequence (c1, c6, c10, c11, c3, c2) is a non–repeating closed strong path.
The sequence (c5, c6, c1, c2, c8, c9, c10, c6, c1) is a strong path that is neither closed nor

non–repeating.

We can combine strong paths.

Definition 2.4.14. Let (V,E, F,C, λ, σ0, σ1,∼) be a twisted polygonal complex. Let
p = (c1, . . . , cn) and q = (d1, . . . , dm) be two strong paths such that cn and d1 are adjacent.
The path–sum p+ q is defined as the strong path (c1, . . . , , cn, d1, . . . , dm).

There are some special paths which we want to draw attention to. The first kind of
paths stays within a single face.

Definition 2.4.15. Let (V,E, F,C, λ, σ0, σ1,∼) be a twisted polygonal complex.
A strong polygon path is a closed, non–repeating strong path (c1, c2, . . . , c2n, c2n+1)

such that ck and ck+1 are 0–adjacent if k is even and 1–adjacent if k is odd.

The strong polygon paths correspond to our native intuition about polygons.
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Remark 2.4.16. Let (V,E, F,C, λ, σ0, σ1,∼) be a twisted polygonal complex.
Any chamber c ∈ C lies in exactly one strong polygon path (up to cyclic permutation

and reflection of the entries).

Proof. Since σ0 and σ1 are involutions without fixed points, each chamber is 0–adjacent
to exactly one other chamber (the same holds for 1–adjacency). Therefore, c lies in the
unique strong polygon path (c, σ1(c), σ0σ1(c), . . . ).

Example 2.4.17. In the two–torus from Example 2.4.2, the unique strong polygon paths
are (c1, c2, c3, c4, c5, c6) and (c7, c8, c9, c10, c11, c12).

To define vertex ramifications, we are interested in strong paths that “surround” a
single vertex, i. e. all of its chambers lie in λ−1

0 (v) for a vertex v.

Definition 2.4.18. Let (V,E, F,C, λ, σ0, σ1,∼) be a twisted polygonal complex.
A strong umbrella path is a non–repeating strong path (c1, c2, . . . , c2n) such that

ci and ci+1 are 2–adjacent if i is even and 1–adjacent if i is odd. If λ0(c1) = v, we
sometimes denote this path as a strong umbrella path around v.

A strong umbrella path p around v is maximal if there is no strong umbrella path q
around v such that p+ q or q + p is a strong umbrella path.

Remark 2.4.19. Let (V,E, F,C, λ, σ0, σ1,∼) be a twisted polygonal complex with a
strong umbrella path (c1, c2, . . . , c2n). Then, λ0(c1) = λ0(ci) for all 1 ≤ i ≤ n.

If there are no ramified edges, we can characterise the maximal strong umbrella paths
completely.

Corollary 2.4.20. Let (V,E, F,C, λ, σ0, σ1,∼) be a twisted polygonal complex without
ramified edges and (c1, . . . , c2n) a maximal strong umbrella path. Then, one of the fol-
lowing cases holds:

• c1 and c2n are only ∼–equivalent to themselves.

• c1 and c2n are 2–adjacent.

Proof. Assume we are not in the first case and consider the equivalence class [c2n]∼. If
this class is equal to {c1, c2n}, the path could be extended to a closed one, in contradiction
to its maximality. Otherwise, there exists a c ∈ C with c ∼ c2n but c 6∈ {c1, c2n}. In
particular, the strong path (c1, . . . , c2n, c, σ1(c)) fulfils the adjacency condition for strong
umbrella paths.

But the original path was maximal, so either c or σ1(c) is equal to a ci with 1 ≤ i ≤ 2n.
We consider both cases in turn.

If c = ci for 1 < i < 2n, the ∼–equivalence class of c contains at least three elements.
This is only possible for a ramified edge.

On the contrary, assume σ1(c) = ci for 1 ≤ i ≤ 2n. This implies c = σ1(ci). But
σ1(ci) ∈ {c1, . . . , c2n} by Definition 2.4.18. Thus, this reduces to the previous case.
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Lemma 2.4.21. Let (V,E, F,C, λ, σ0, σ1,∼) be a twisted polygonal complex without ram-
ified edges. Then, every chamber c ∈ C lies in exactly one maximal strong umbrella path
(up to cyclic permutation and reflection).

Proof. If there are no ramified edges, we can define an involution σ2:

σ2 : C → C c 7→
{
c [c]∼ = {c}
ĉ [c]∼ = {c, ĉ} 6= {c}

Since every chamber is 1–adjacent to exactly one other chamber and is 2–adjacent to
at most one other chamber, maximal strong umbrella paths correspond to the orbits of
〈σ1, σ2〉.

Example 2.4.22. Consider the one–cone from Example 2.4.8:

c1

c2

c3 c4

c5

c6

f

e2

e1 e1

v1

v2 v2

The unique maximal strong umbrella paths are (c1, c6, c1) around v1, and (c3, c2, c5, c4)
around v2.

In particular, if there are no ramified edges, the maximal strong umbrella paths parti-
tion the set λ−1

0 (v) for each vertex v ∈ V . This allows us to define a vertex ramification:
These are just the vertices where λ−1

0 (v) is partitioned into more than one set.

Definition 2.4.23. Let (V,E, F,C, λ, σ0, σ1,∼) be a twisted polygonal complex.

• v ∈ V is a chaotic vertex, if it is incident to a ramified edge.

• v ∈ V is a ramified vertex, if it is not incident to a ramified edge and if there
are at least two different maximal strong umbrella paths around v.

• v ∈ V is a boundary vertex, if it is not incident to a ramified edge and there is
a unique maximal strong umbrella path around v, which is non–closed.

• v ∈ V is an inner vertex, if it is not incident to a ramified edge and there is a
unique maximal strong umbrella path around v, which is closed.

Finally, we can define twisted polygonal surfaces.

Definition 2.4.24. A twisted polygonal surface is a twisted polygonal complex con-
taining neither ramified vertices nor ramified edges.
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Combining Definition 2.4.7 and Remark 2.2.4, we obtain the category of twisted polyg-
onal surfaces.

Definition 2.4.25. TwistPolySurf is the category of twisted polygonal surfaces, to-
gether with twisted polygonal morphisms.

2.5 Category PolyComp of polygonal complexes
In Section 2.4, we introduced the formalism of twisted polygonal complexes and sur-
faces. While it is very expressive, it is also quite unwieldy. If there is no need to study
cases where several vertices or edges within a single face are identical, the formalism
of polygonal complexes is usually more convenient. This is the case for the following
combinatorial surface:

e6

e8

e9

e12

e13

e10

v2

v5

v3 v7

v11

f1 f4

A polygonal complex is more flexible than a simplicial complex. For example, it is
possible to have two edges with the same vertices. It is formalised as follows:

• Sets of vertices V , edges E, and faces F .

• A map η : E → Pot2(V ) that associates each edge to its end–points.

• A map ϕ : F → Pot(F ) that associates each face to its incident edges.

To map a face to its incident vertices, we have to combine η and ϕ. Since we often use
this combination, we give it a special name. As the definition is a combination of map
composition (written as ◦) and set–theoretic union (written as ∪), we use the symbol ]
for their combination. This symbol is called Taurus in astronomy.

Definition 2.5.1. Let A, B, and C be sets. If α : A→ Pot(B) and β : B → Pot(C) are
maps, then the taurus composition β]α : A→ Pot(C) is defined by a 7→

⋃
b∈α(a) β(b).

Definition 2.5.2. Let V (vertices), E (edges), and F (faces) be sets with maps
η : E → Pot2(V ) and ϕ : F → Pot(E). The quintuple (V,E, F, η, ϕ) is called polygonal
complex if and only if

1. Faces are polygons: For every f ∈ F , there is a sequence (v1, e1, v2, e2, . . . , vk, ek)
satisfying
• k = |ϕ(f)| = |η]ϕ(f)| ≥ 3.
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• {e1, e2, . . . , ek} = ϕ(f) and {v1, . . . , vk} = η]ϕ(f).
• η(ei) = {vi, vi+1} for all 1 ≤ i < k and η(ek) = {v1, vk}.

2. Every vertex lies in an edge: For every v ∈ V , there is an e ∈ E with v ∈ η(e).

3. Every edge lies in a face: For every e ∈ E, there is an f ∈ F with e ∈ ϕ(f).

We define an incidence relation ≺⊆ (V × E) ] (V × F ) ] (E × F ) as follows:

• For v ∈ V and e ∈ E, we have v ≺ e if and only if v ∈ η(e).

• For e ∈ E and f ∈ F , we have e ≺ f if and only if e ∈ ϕ(f).

• For v ∈ V and f ∈ F , we have v ≺ f if and only if there is an e ∈ E with v ≺ e
and e ≺ f .

In particular, the map η may be non–injective. This means that there are two edges
whose incident vertices are identical. We usually work with finite polygonal complexes.

Example 2.5.3. (V,E, F, η, ϕ) with

V = {v2, v3, v5, v7, v11}, E = {e6, e8, e9, e10, e12, e13}, F = {f1, f4},

and

η : E → Pot2(V ) e 7→



{v2, v5} e = e6

{v2, v3} e = e8

{v3, v5} e = e9

{v5, v11} e = e10

{v3, v7} e = e12

{v7, v11} e = e13,

ϕ : F → Pot(E) f 7→
{
{e6, e8, e9} f = f1

{e9, e10, e11, e13} f = f4,

illustrated by

e6

e8

e9

e12

e13

e10

v2

v5

v3 v7

v11

f1 f4

is a polygonal complex. The sequence for f1 is (v2, e8, v3, e9, v5, e6). The sequence for f4
is (v3, e9, v5, e10, v11, e13, v7, e12).

32



Sometimes we want to restrict attention to those polygonal complexes in which all
polygons are triangles. We call those complexes triangular complexes.

Definition 2.5.4. Let P = (V,E, F, η, ϕ) be a polygonal complex. Define

| · | : F → N f 7→ |ϕ(f)|.

If |f | = 3 for all f ∈ F , we call P a triangular complex.

Triangular complexes have a nice formal property: Any two–element–subset of vertices
that are incident to a face, lies in the image of η. To see that this is not true in general,
consider the polygonal complex of Example 2.5.3 and the set {v3, v11}.

Corollary 2.5.5. Let P = (V,E, F, η, ϕ) be a polygonal complex and f ∈ F with |f | = 3.
For any x ∈ Pot2(V ) with x ⊆ (η]ϕ)(f), there is an edge e ∈ E with η(e) = x.

Proof. Since |f | = 3, there is a sequence (v1, e1, v2, e2, v3, e3) with ϕ(f) = {e1, e2, e3}
and (η]ϕ)(f) = {v1, v2, v3}, that satisfies

η(e1) = {v1, v2} η(e2) = {v2, v3} η(e3) = {v1, v3}.

Since these are all two–element–subsets of {v1, v2, v3}, the claim follows.

Next, we define morphisms between polygonal complexes. Since a polygonal complex
consists of three sets with additional structure, a morphism should consist of maps
between vertices, edges, and faces. These maps should be compatible with the inclusion
maps η and ϕ.

Additionally, we want to enforce that the number of vertices in a face does not change
under a morphism. E. g. a hexagonal face should not be mapped to a triangular one.
This can be described easily with the map | · | from Definition 2.5.4.

Definition 2.5.6. Let (V 1, E1, F 1, η1, ϕ1) and (V 2, E2, F 2, η2, ϕ2) be two polygonal com-
plexes. A polygonal morphism between them consists of maps

µV : V 1 → V 2 µE : E1 → E2 µF : F 1 → F 2,

with the properties

• η–compatible v ∈ η1(e) implies µV (v) ∈ η2(µE(e)).

• ϕ–compatible e ∈ ϕ1(f) implies µE(e) ∈ ϕ2(µF (f)).

• non–degenerate For any f ∈ F 1, we have |f | = |µF (f)|.

Corollary 2.5.7. Let (µV , µE , µF ) : (V 1, E1, F 1, η1, ϕ1) → (V 2, E2, F 2, η2, ϕ2) be a
polygonal morphism. Then, η1(e) = {v1, v2} implies η2(µE(e)) = {µV (v1), µV (v2)}.

Corollary 2.5.8. Let (µV , µE , µF ) : (V 1, E1, F 1, η1, ϕ1) → (V 2, E2, F 2, η2, ϕ2) be a
polygonal morphism. Then, (η1]ϕ1)(f) = {v1, v2, . . . , vn} implies (η2]ϕ2)(µF (f)) =
{µV (v1), µV (v2), . . . , µV (vn)}.
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With the definitions of polygonal complex and polygonal morphism, we can define the
categories of polygonal complexes and triangular complexes.

Definition 2.5.9. PolyComp is the category of polygonal complexes, together with
polygonal morphisms.

TriComp is the category of triangular complexes, together with polygonal morphisms.

Well–defined. TriComp is obtained from PolyComp by restriction of objects as in
Remark 2.2.4.

2.5.1 Functor PolyComp→ TwistPolyComp

Every polygonal complex can be interpreted as a twisted polygonal complex, by sub-
dividing each face barycentrically. In this subsection, we formalise this process as a
functor. We start with the set of chambers. For polygonal complexes, the map λ is
injective, so we can define a chamber as a triple of incident vertex, edge, and face. This
configuration is called a flag.

Definition 2.5.10. Let (V,E, F, η, ϕ) be a polygonal complex. A flag is an element
(v, e, f) ∈ V × E × F with v ≺ e ≺ f .

The involution σ0 changes the vertex within a flag. For polygonal complexes, this
uniquely defines the involution.

Remark 2.5.11. Let (V,E, F, η, ϕ) be a polygonal complex and (v, e, f) be a flag. Then,
there exists exactly one other vertex v∗ ∈ V such that (v∗, e, f) is a flag. It satisfies
η(e) = {v, v∗}.

Proof. η(e) = {v, v∗} for some v∗ ∈ V . By definition of incidence, (v∗, e, f) is a flag.

The same thing can be done to construct the involution σ1 that switches the edge
within a flag.

Remark 2.5.12. Let P = (V,E, F, η, ϕ) be a polygonal complex and (v, e, f) be a flag.
Then, there exists exactly one other edge e∗ ∈ E such that (v, e∗, f) is a flag.

Proof. Since P is a polygonal complex, there exist pairwise distinct vi ∈ V and ei ∈ E
with ϕ(f) = {e1, . . . , ek} and η]ϕ(f) = {v1, . . . , vk}, such that

η(ei) =
{
{vi, vi+1} 1 ≤ i < k

{v1, vk} i = k.

Without loss of generality, we can assume v = v1. Then, only the edges e1 and ek are
incident to both v and f .

At this point, we can formally state how a polygonal complex has to be formalised as
twisted polygonal complex.
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Definition 2.5.13. TwistPoly is a functor from PolyComp to TwistPolyComp. If
P = (V,E, F, η, ϕ) is a polygonal complex, TwistPoly(P ) is the twisted polygonal complex
(V,E, F,C, λ, σ0, σ1,∼) with

• C is the set of flags.

• λ : C → V × E × F, (v, e, f) 7→ (v, e, f).

• σ0 : C → C maps (v, e, f) to the flag (v∗, e, f) from Remark 2.5.11.

• σ1 : C → C maps (v, e, f) to the flag (v, e∗, f) from Remark 2.5.12.

• (v, e, f) ∼ (v∗, e∗, f∗) if and only if v = v∗ and e = e∗.

If µ = (µV , µE , µF ) is a polygonal morphism, TwistPoly(µ) is the twisted polygonal mor-
phism (µV , µE , µF , µC), with µC((v, e, f)) := (µV (v), µE(e), µF (f)).

Well–defined. We have to show that TwistPoly(P ) is a twisted polygonal complex, that
TwistPoly(µ) is a twisted polygonal map, and that TwistPoly defines a functor.

1. To show that TwistPoly(P ) is a twisted polygonal complex, we check the conditions
of Definition 2.4.1.

• σ0 is an involution without fixed points by Remark 2.5.11. By definition,

λ12((v, e, f)) = (e, f) = λ12((v∗, e, f)) = (λ12 ◦ σ0)(v, e, f).

• σ1 is an involution without fixed points by Remark 2.5.12. By definition,

λ02((v, e, f)) = (v, f) = λ02((v, e∗, f)) = (λ02 ◦ σ1)(v, e, f).

• Clearly, ∼ is an equivalence relation. By definition, c1 ∼ c2 implies λ01(c1) =
λ01(c2).
Let (v, e, f) ∼ (v, e, f∗). We need to show that σ0(v, e, f) ∼ σ0(v, e, f∗) holds.
The action of σ0 replaces v by v∗ with η(e) = {v, v∗} in both cases (see
Remark 2.5.11). Therefore,

λ01(σ0(v, e, f)) = λ01(v∗, e, f) = (v∗, e) = λ01(v∗, e, f∗) = λ01(σ0(v, e, f∗)).

• Consider two chambers (v, e, f) and (v∗, e, f∗). If v = v∗, we have (v, e, f) ∼
(v∗, e, f∗). Otherwise, η(e) = {v, v∗}. Then, σ0((v, e, f)) = (v∗, e, f), so
(v∗, e, f) ∼ (v∗, e, f∗).
• Consider two chambers (v, e, f) and (v∗, e∗, f). Since P is a polygonal com-

plex, there is an alternating sequence (v1, e1, v2, e2, . . . , vk, ek) (by Definition
2.5.2).
Now, σ0 exchanges the tuples (vi, ei) and (vi+1, ei). The involution σ1 ex-
changes (vi, ei) and (vi, ei−1). Since both (v, e) and (v∗, e∗) are such tuples and
the involutions act transitively on them, we have (v∗, e∗, f) ∈ 〈σ0, σ1〉.(v, e, f).
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2. To show that TwistPoly(µ) is a twisted polygonal morphism, we check the condi-
tions of Definition 2.4.5. For that, we set some notation: µ : P 1 → P 2 with

P k = (V k, Ek, F k, ηk, ϕk)
TwistPoly(P k) = (V k, Ek, F k, Ck, λk, σk0 , σ

k
1 ).

The map µC : C1 → C2 is well–defined since polygonal morphisms preserve inci-
dence.
• Since λk are defined as identity maps, the compatibility with λ is obvious.
• Compatibility with σ0: Let (v, e, f) ∈ V 1 × E1 × F 1 with η1(e) = {v, v∗}.

From σ1
0(v, e, f) = (v∗, e, f), we obtain

µC(σ1
0(v, e, f)) = (µV (v∗), µE(e), µV (f)).

On the other hand, we can combine µC(v, e, f) = (µV (v), µE(e), µF (f)) with
η2(µE(e)) = {µV (v), µV (v∗)} to conclude

σ2
0(µC(v, e, f)) = (µV (v∗), µE(e), µF (f)).

• Compatibility with σ1. Analogous to the compatibility with σ0.
• Compatibility with ∼ is obvious.
• Non–degenerate: By Lemma 2.4.6, it is sufficient to show that the cardinalities

of the orbits coincide (they are all finite). Since |〈σk0 , σk1 〉.(v, e, f)| = 2|ϕk(f)|
for any flag (v, e, f) ∈ V k×Ek×F k, and polygonal morphisms fulfil |ϕ1(f)| =
|ϕ2(µF (f))|, this claim follows.

3. Finally, we have to check the conditions of Definition 2.2.5. But both composition
and identities are obviously preserved.

This functor also preserves the incidence relation, i. e. the incidence relations from
Definition 2.5.2 is compatible with the one from Definition 2.4.3.

Remark 2.5.14. Let P = (V,E, F, η, ϕ) be a polygonal complex. Let x, y ∈ V ] E ] F
with x ≺ y. Then, x ≺ y in TwistPoly(P ) as well.

2.5.2 Edge–Face–Paths and polygonal surfaces
In Section 2.5, we introduced the formalism of polygonal complexes. In this subsection,
we restrict polygonal complexes to polygonal surfaces. Like mentioned in Subsection
2.1.1, we have to avoid both edge and vertex ramifications.

Edge ramifications are easy to avoid since we only have to count the number of faces
that are incident to a given edge.

Definition 2.5.15. Let (V,E, F, η, ϕ) be a polygonal complex and e ∈ E. It is
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• an inner edge if it is incident to exactly two faces.

• a boundary edge if it is incident to exactly one face.

• a ramified edge if it is incident to more than two faces.

It is easy to see that the definition of edge types for polygonal complexes is compatible
with Definition 2.4.10 of edge types for twisted polygonal complexes.

Remark 2.5.16. Let P be a polygonal complex. An edge is inner/boundary/ramified in
P if and only if it is inner/boundary/ramified in TwistPoly(P ).

In a simplicial surface, there cannot be any ramified edges. Unfortunately, the exclu-
sion of ramified edges is not sufficient to guarantee that a triangular complex is a surface.
To see this, imagine two distinct surfaces and identify two vertices (one of each). There
are no ramified edges in this construction but there is a vertex which is incident to two
“surface patches”. We will call these patches umbrellas. Visually, this situation could be
imagined like this:

To formally define these patches, we introduce a concept of paths.

Definition 2.5.17. Let (V,E, F, η, ϕ) be a polygonal complex. An edge–face–path is
a sequence (e0, f1, e1, f2, . . . , fn, en) such that

• ei ∈ E for all 0 ≤ i ≤ n.

• fi ∈ F for all 1 ≤ i ≤ n.

• ei−1 and ei are incident to fi for all 1 ≤ i ≤ n.

An edge–face–path is called closed if e0 = en. It is called non–repeating if fi 6= fj for
all 1 ≤ i < j ≤ n. An edge–face–path is called empty if n = 0.

Example 2.5.18. Consider the polygonal complex from Example 2.5.3:

e6

e8

e9

e12

e13

e10

v2

v5

v3 v7

v11

f1 f4
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(e8, f1, e9, f4, e10) is a non–repeating edge–face–path.

Two edge–face–paths can be combined if one ends where the other one begins.

Definition 2.5.19. Let (V,E, F, η, ϕ) be a polygonal complex. Let p1 = (e0, f1, . . . , en)
and p2 = (en, . . . , em) be two edge–face–paths. Their path–sum p1 + p2 is the edge–
face–path (e0, . . . , en, . . . , em).

Definition 2.5.20. Let (V,E, F, η, ϕ) be a polygonal complex. An umbrella–path is an
edge–face–path (e0, f1, e1, . . . , fn, en) such that there is a vertex v ∈ V that is incident to
all edges of the edge–face–path. A non–empty, non–repeating umbrella–path u is called
maximal if there is no non–empty umbrella path p such that p + u or u + p is a non–
repeating umbrella path.

Remark 2.5.21. Let (V,E, F, η, ϕ) be a polygonal complex and (e0, f1, e1, . . . , fn, en) an
umbrella–path. Then, there is exactly one vertex incident to all edges ei.

Proof. Since u is non–empty, it starts with (e0, f1, e1, . . . ). By Definition 2.5.20, we
know η(e0) ∩ η(e1) 6= ∅.

If this intersection contains more than one element, we have η(e0) = η(e1). Then,
Definition 2.5.2 implies |ϕ(f1)| = 2, in contradiction to |ϕ(f1)| ≥ 3.

We would like to show the following statements for a polygonal complex without
ramified edges:

1. For every vertex v ∈ V and face f ∈ F with v ≺ f , there is a unique maximal
umbrella–path around v that contains f .

2. For every vertex v ∈ V , the maximal umbrella–paths around v partition the inci-
dent faces.

Instead of showing them directly, we make use of the functor TwistPoly that was intro-
duced in Subsection 2.5.1.

We relate the umbrella–paths of the polygonal complex P to the strong umbrella paths
of the twisted polygonal complex TwistPoly(P ). Then, we use this relation to carry over
the corresponding statements for strong umbrella paths.

Lemma 2.5.22. Let P = (V,E, F, η, ϕ) be a polygonal complex.

1. Let (e0, f1, e1, f2, e2, . . . , fn, en) be an umbrella–path around v in P . Then,

(c−1 , c
+
1 , c
−
2 , c

+
2 , . . . , c

−
n , c

+
n )

is a strong umbrella path around v in TwistPoly(P ), with c−i := (v, ei−1, fi) and
c+
i := (v, ei, fi).

2. Let (c1, c2, . . . , c2n) be a strong umbrella path around v in TwistPoly(P ). Then,

(λ1(c1), λ2(c2), λ1(c3), λ2(c4), . . . , λ1(c2n−1), λ2(c2n), λ1(c2n))

is an umbrella–path around v in P .
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3. These two constructions are inverse to each other.

4. Let u1 and u2 be two umbrella paths in P , such that u1 + u2 is also an umbrella
path. Then, TwistPoly(u1 + u2) = TwistPoly(u1) + TwistPoly(u2).

5. Let TwistPoly(u1) and TwistPoly(u2) be two strong umbrella paths in the twisted
polygonal complex TwistPoly(P ), such that TwistPoly(u1)+TwistPoly(u2) is a strong
umbrella path. Then, u1 + u2 is a well–defined umbrella path in P .

Proof. 1. We need to show the properties of Definition 2.4.18. By definition, c−i
and c+

i are 1–adjacent. Since c+
i = (v, ei, fi) and c−i+1 = (v, ei, fi+1), these two

chambers are 2–adjacent.

2. If i is odd, we have ci+1 = σ1(ci), thus λ02(ci+1) = λ02(ci). In particular, λ1(ci) is
incident to λ2(ci+1) = λ2(ci).
If i is even, we have ci+1 ∼ ci, thus λ01(ci) = λ01(ci+1). In particular, λ1(ci+1) =
λ1(ci) is incident to λ2(ci).
Finally, λ1(c2n) is clearly incident to λ2(c2n).

3. This follows from inspection.

4. Clear.

5. Clear.

With the correspondence between strong umbrella paths and umbrella–paths estab-
lished, we can now carry over the results of Corollary 2.4.20 and Lemma 2.4.21.

Corollary 2.5.23. Let (V,E, F, η, ϕ) be a polygonal complex without ramified edges. Let
u be a maximal umbrella–path. Then either u is closed or e0 and en are boundary edges.

Proof. By Lemma 2.5.22, u is maximal in P if and only if TwistPoly(u) is maximal in
TwistPoly(P ). Thus, Corollary 2.4.20 is applicable. Translating the cases back (with
Remark 2.5.16) gives the desired result.

Lemma 2.5.24. Let (V,E, F, η, ϕ) be a polygonal complex with no ramified edges and
v ∈ V such that the number of incident faces is finite. Then, every incident f ∈ F lies in
exactly one maximal umbrella around v (unique up to inversion and cyclic permutation).

In particular, the maximal umbrellas partition the incident faces.

Proof. We show existence first. There are exactly two flags (v, e1, f) and (v, e2, f) that
are chambers in TwistPoly(P ) (by Definition 2.5.13).

We apply Lemma 2.4.21 to show that there is exactly one maximal strong umbrella
path containing each of them. Since these flags are 1–adjacent, they lie in the same
strong umbrella path. We apply Lemma 2.5.22 to construct an umbrella path around v
that contains f .

To show uniqueness, assume there are two maximal umbrella–paths around v that
contain f . By Lemma 2.5.22, we would have two different maximal strong umbrella
paths containing the flags (v, e1, f) and (v, e2, f). This contradicts Lemma 2.4.21.
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After defining and characterising umbrella–paths, we can now define vertex ramifica-
tions properly: A vertex is ramified if the umbrella partition from Lemma 2.5.24 contains
more than one element.

Definition 2.5.25. Let (V,E, F, η, ϕ) be a polygonal complex. A vertex v ∈ V is called

• inner vertex if it is only incident to inner edges and if there is a unique maximal
umbrella–path around it.

• boundary vertex if it incident to some boundary edges, no ramified edges and
there is a unique maximal umbrella–path around it.

• ramified vertex if it is not incident to a ramified edge and there are at least two
maximal umbrella–paths around it.

• chaotic vertex if it is incident to a ramified edge.

This definition of vertex types for polygonal complexes is fully compatible with Defi-
nition 2.4.23 of vertex types for twisted polygonal complexes.

Remark 2.5.26. Let P = (V,E, F, η, ϕ) be a polygonal complex with twisted polygonal
complex TwistPoly(P ) = (V,E, F,C, λ, σ0, σ1).

Then, a vertex v ∈ V is inner/boundary/ramified/chaotic in P if and only if it is
inner/boundary/ramified/chaotic in TwistPoly(P ).

With the concepts of edge and vertex ramifications, we can define polygonal surfaces.

Definition 2.5.27. A polygonal complex (V,E, F, η, ϕ) is called a polygonal surface
if it contains neither ramified edges nor ramified vertices. A triangular complex that is
also a polygonal surface is called a simplicial surface.

Combining Definition 2.5.9 and Remark 2.2.4 gives the category of polygonal surfaces.

Definition 2.5.28. PolySurf is the category of polygonal surfaces, together with polyg-
onal morphisms.

With Remark 2.2.6, the functor TwistPoly can be restricted to polygonal surfaces.

Remark 2.5.29. Let P be a polygonal complex. It is a polygonal surface if and only if
TwistPoly(P ) is a twisted polygonal surface.

In particular, TwistPoly restricts to a functor PolySurf → TwistPolySurf .

2.6 Category DressSurf of Dress surfaces
The formalisms of polygonal complexes (Section 2.5) and twisted polygonal complexes
(Section 2.4) are very combinatorial. Both require extensive work to define a “surface”–
concept. The formalism of Dress–surfaces, in contrast, is only applicable to combinatorial
surfaces. Consider the tetrahedron:
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v1 v2 v1

v4 v3

v1

e1 e1

e2 e6 e4 e3

e5

e2 e3

f3

f1

f4

f2

We can reconstruct the complete incidence structure from the barycentric subdivision,
if we know the adjacency relations.
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7 8
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22
2324

v1 v2 v1

v4 v3

v1

e1 e1

e2 e6 e4 e3

e5

e2 e3

f3

f1

f4

f2

We can encode these adjacencies by involutions, e. g.

σ0 = (1, 2)(3, 4)(5, 6)(7, 8)(9, 10)(11, 12)(13, 14)(15, 16)(17, 18)(19, 20)(21, 22)(23, 24)
σ1 = (1, 6)(2, 3)(4, 5)(7, 12)(8, 9)(10, 11)(13, 18)(14, 15)(16, 17)(19, 24)(20, 21)(22, 23)
σ2 = (1, 22)(2, 21)(3, 8)(4, 7)(5, 18)(6, 17)(9, 20)(10, 19)(11, 14)(12, 13)(15, 24)(16, 23)

The vertices of the combinatorial surface stand in bijection to the orbits of 〈σ1, σ2〉,
the edges to the orbits of 〈σ0, σ2〉, and the faces to the orbits of 〈σ0, σ1〉.

This formalisation of surfaces already appeared in [28] and [5].

Definition 2.6.1. A Dress–surface is a quadruple (C, σ0, σ1, σ2) with
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• A set C called chambers.

• Three involutions σk : C → C.

• σ0 and σ1 do not fix any chamber.

• (σ0σ2)2 = idC .

Example 2.6.2. The two–torus ({1, . . . , 12}, σ0, σ1, σ2) with

σ0 = (1, 2)(3, 4)(5, 6)(7, 8)(9, 10)(11, 12)
σ1 = (1, 6)(2, 3)(4, 5)(7, 12)(8, 9)(10, 11)
σ2 = (1, 7)(2, 8)(3, 11)(4, 12)(5, 9)(6, 10),

illustrated by

1 2
3

45

6

7 8
9

1011

12

is a Dress–surface.

Example 2.6.2 also illustrates that two vertices within a face can be identical.
As stated in the beginning of Section 2.6, the vertices, edges, and faces of the combi-

natorial surface can be described purely in terms of the involutions:

Definition 2.6.3. Let (C, σ0, σ1, σ2) be a Dress–surface.

• The orbits of 〈σ1, σ2〉 on C are called vertices.

• The orbits of 〈σ0, σ2〉 on C are called edges.

• The orbits of 〈σ0, σ1〉 on C are called faces.

We can define a transitive incidence relation on vertices, edges, and faces. Intuitively,
a vertex is incident to an edge if they lie in the same chamber. In the formalism of
Dress–surfaces, this chamber is contained in the sets representing vertex and edge.

Definition 2.6.4. Let (C, σ0, σ1, σ2) be a Dress–surface. We define an incidence rela-
tion ≺ as follows:

• A vertex x is incident to an edge y if x ∩ y 6= ∅.
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• A vertex x is incident to a face y if x ∩ y 6= ∅.

• An edge x is incident to a face y if x ∩ y 6= ∅.

Example 2.6.5. Consider the tetrahedron ({1, . . . , 12}, σ0, σ1, σ2) with

σ0 = (1, 2)(3, 4)(5, 6)(7, 8)(9, 10)(11, 12)(13, 14)(15, 16)(17, 18)(19, 20)(21, 22)(23, 24)
σ1 = (1, 6)(2, 3)(4, 5)(7, 12)(8, 9)(10, 11)(13, 18)(14, 15)(16, 17)(19, 24)(20, 21)(22, 23)
σ2 = (1, 22)(2, 21)(3, 8)(4, 7)(5, 18)(6, 17)(9, 20)(10, 19)(11, 14)(12, 13)(15, 24)(16, 23)

from the start of Section 2.6:
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e2 e6 e4 e3
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e2 e3

f3

f1

f4

f2

The vertices are the orbits of 〈σ1, σ2〉 on {1, . . . , 12}. With the labels from the picture:

v1 = {1, 6, 16, 17, 22, 23} v2 = {10, 11, 14, 15, 19, 24}
v3 = {2, 3, 8, 9, 20, 21} v4 = {4, 5, 7, 12, 13, 18}

The edges are the orbits of 〈σ0, σ2〉 on {1, . . . , 12}. With the labels from the picture:

e1 = {15, 16, 23, 24} e2 = {17, 18, 21, 22} e3 = {1, 2, 5, 6}
e4 = {9, 10, 19, 20} e5 = {3, 4, 7, 8} e6 = {11, 12, 13, 14}

The faces are the orbits of 〈σ0, σ1〉 on {1, . . . , 12}. With the labels from the picture:

f1 = {7, 8, 9, 10, 11, 12} f2 = {1, 2, 3, 4, 5, 6}
f3 = {13, 14, 15, 16, 17, 18} f4 = {19, 20, 21, 22, 23, 24}

The vertex v2 is incident to the edge e6 since v2 ∩ e6 = {11, 14}, but is not incident to
the edge e5 since v2 ∩ e5 = ∅.

Remark 2.6.6. Let (C, σ0, σ1, σ2) be a Dress–surface. Incidence is a transitive relation.
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Proof. Let x be a vertex, y be an edge, and z be a face, such that x∩y 6= ∅ and y∩z 6= ∅.
We want to show that x ∩ z 6= ∅ as well. Define a group epimorphism by

〈a, b | a2, b2, (ab)2〉 → 〈σ0, σ2〉, a 7→ σ0 b 7→ σ2.

Thus, if c lies in the orbit y of 〈σ0, σ2〉, we have y = {c, σ0(c), σ2(c), σ0σ2(c)}.
Since x is an orbit of 〈σ1, σ2〉, the set x ∩ y contains {c, σ2(c)} or {σ0(c), σ2σ0(c)}.
Since z is an orbit of 〈σ0, σ1〉, the set y ∩ z contains {c, σ0(c)} or {σ2(c), σ0σ2(c)}. In

all four possible combinations, there is a non–trivial intersection between x and z.

To define polygonal surfaces and twisted polygonal surfaces, we had to exclude ver-
tex and edge ramifications (compare Subsection 2.1.1). For Dress–surfaces, this is not
necessary: By construction of the vertices and edges, it is impossible for ramifications
to occur. We can still distinguish whether vertices and edges lie in the inner part of the
surface or on the boundary.

Definition 2.6.7. Let (C, σ0, σ1, σ2) be a Dress–surface. An edge y is called

• inner edge if |y| = 4.

• boundary edge if |y| = 2.

A vertex x is called

• inner vertex if it is only incident to inner edges.

• boundary vertex if it is incident to at least one boundary vertex.

Next, we define morphisms for Dress–surfaces. Clearly, they should map the chambers
onto each other and preserve the involutions. In addition, a face should keep its size,
e. g. a hexagonal face should not be mapped to a triangular one.

Definition 2.6.8. Let (C, σ0, σ1, σ2) and (D, τ0, τ1, τ2) be two Dress–surfaces. A Dress
morphism is a map µ : C → D satisfying

• compatible with σk: µ ◦ σk = τk ◦ µ for all k ∈ {0, 1, 2}.

• non–degenerate: The restriction µ : 〈σ0, σ1〉.c→ 〈τ0, τ1〉.µ(c) is bijective.

If µ is bijective, it is called a Dress isomorphism. If (C, σ0, σ1, σ2) = (D, τ0, τ1, τ2)
and µ is bijective, it is called a Dress automorphism.

Definition 2.6.9. DressSurf is the category of Dress surfaces, together with Dress
morphisms.

We can also define coverings of Dress–surfaces, if we extend the non–degeneracy con-
dition of Definition 2.6.8 to all subgroups generated by two involutions. This enforces
three things:
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• Inner edges are mapped to inner edges, and boundary edges are mapped to bound-
ary edges.

• Inner vertices are mapped to inner vertices, and boundary vertices are mapped to
boundary vertices.

• A vertex contained in k chambers is mapped to a vertex with k chambers.

Definition 2.6.10. Let (C, σ0, σ1, σ2) and (D, τ0, τ1, τ2) be two Dress–surfaces. A Dress
covering morphism is a Dress morphism µ : C → D where the restrictions

µ : 〈σ0, σ2〉.c→ 〈τ0, τ2〉.µ(c)
µ : 〈σ1, σ2〉.c→ 〈τ1, τ2〉.µ(c)

are bijective for each c ∈ C.

2.7 Functors
In the previous sections, we introduced several different formalisations of combinatorial
surfaces. In this section, we look closer at their relations to each other.

2.7.1 Functors between TriComp and SimpComp2

In this subsection, we explore the connections between simplicial complexes and trian-
gular complexes. We start by showing that every simplicial complex can be interpreted
as a triangular complex.

Definition 2.7.1. Poly is a functor from SimpComp2 to TriComp. It maps the
simplicial complex (V,∆) to the triangular complex (V,E, F, idE , idF ), with

E := {x ∈ ∆ | |x| = 2}
F := {x ∈ ∆ | |x| = 3}

and the simplicial morphism µV to (µV , µE , µF ), where µE and µF are defined as
element–wise application of µV .

Well–defined. We have to show that (V,E, F, idE , idF ) is a triangular complex:

1. For any f ∈ F we have f = {v1, v2, v3} ⊆ V . The sequence

(v1, {v1, v2}, v2, {v2, v3}, v3, {v1, v3})

satisfies the requirements of Definition 2.5.2.

2. Since (V,∆) is homogeneous, all vertices and edges lie in a face. Since all subsets
of a simplex are also simplices, every vertex thus lies in an edge.
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Next, we have to show that (µV , µE , µF ) is a polygonal morphism. This follows
immediately from the construction.

The functorial properties (Definition 2.2.5) are obvious.

We are also interested in the converse question: Which triangular complexes can be
interpreted as simplicial complexes? To answer it, we construct the “obvious” functor
from TriComp to SimpComp2: We map (V,E, F, η, ϕ) to the simplicial complex that
we obtain when we forget the different names of edges and faces, and just keep the set
of incident vertices.

Definition 2.7.2. Simp is a functor from TriComp to SimpComp2. It maps the
triangular complex (V,E, F, η, ϕ) to the simplicial complex (V,∆) with

∆ := {{v} | v ∈ V } ∪ {η(e) | e ∈ E} ∪ {(η]ϕ)(f) | f ∈ F},

and the polygonal morphism (µV , µE , µF ) to µV .

Well–defined. First, we show that (V,∆) is a simplicial complex: Consider the different
sets in ∆ in turn.

• The set {v} has no non–empty subset except {v}.

• The set η(e) consists of two vertices in V . Since both of these appear as singletons
in ∆, there is no problem here.

• The set (η]ϕ)(f) =
⋃
e∈ϕ(f) η(e) consists of three elements of V by Definition

2.5.2. The one–element–subsets are {v} ∈ ∆. Consider a two–element–subset
{v, w}. Since η|ϕ(f) is injective and |ϕ(f)| = |Pot2({1, 2, 3})| = 3, there is an edge
e ∈ ϕ(f) with η(e) = {v, w}.

Since every vertex and edge of a polygonal complex is contained in a face, (V,∆) is
homogeneous of dimension 2.

Next, we show that µV is a simplicial morphism. Consider a simplex X ∈ ∆.

1. If X = {v}, then {µ(v)} is a simplex of the image.

2. If X = {v1, v2}, the claim follows from Corollary 2.5.7.

3. If X = {v1, v2, v3}, the claim follows from Corollary 2.5.8.

The functorial properties (Definition 2.2.5) are obvious.

The functor Simp inverts the functor Poly:

Remark 2.7.3. Let S be a homogeneous simplicial complex of dimension 2. Then,
Simp(Poly(S)) = S.
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Unfortunately, the opposite inversion Poly(Simp(P )) is in general not isomorphic to P
(isomorphism is the most we can hope for in this situation since the functor Simp forgets
the previous labels of edges and faces). If we consider Definition 2.7.2 in detail, the
reason becomes clear: If two edges (or faces) share the same vertices, they are collapsed
into one edge (or face). This motivates the following definition.

Definition 2.7.4. A triangular complex (V,E, F, η, ϕ) is called vertex–faithful if η
and η]ϕ are injective.

Vertex–faithful triangular complexes are uniquely determined by the vertex–edge and
the vertex–face incidence relations.

Lemma 2.7.5. Let V , E, and F be sets with maps η : E → Pot2(V ) and ψ : F →
Pot3(V ) with the following properties:

1. Vertex–faithful: η and ψ are injective.

2. Every vertex lies in an edge: For every v ∈ V , there is an e ∈ E with v ∈ η(e).

3. Every edge lies in a face: For every e ∈ E, there is an f ∈ F with η(e) ⊆ ψ(f).

4. Every face has three edges: For every f ∈ F and every two–element subset S ⊆
ψ(f), there is an e ∈ E with η(e) = S.

Then the map
ϕ : F → Pot3(E) f 7→ {e ∈ E | η(e) ⊆ ψ(f)} (2.1)

is well–defined and (V,E, F, η, ϕ) is a vertex–faithful triangular complex.

Proof. We start by showing that ϕ is well–defined. For f ∈ F , the set ψ(f) consists of
three elements. Since |η(e)| = 2 for all e ∈ E and η is injective, there can be at most
three edges e that fulfil η(e) ⊆ ψ(f). By our fourth assumption, there are also at least
three.

Now we need to show that (V,E, F, η, ϕ) is a triangular complex. By construction,
every vertex lies in an edge and every edge lies in a face. Now consider the triangle–
condition. By definition of ψ, we have for f ∈ F⋃

e∈ϕ(f)
η(e) = ψ(f), (2.2)

which has three elements. Call ϕ(f) = {e1, e2, e3}. Since η is injective, we can find a
labelling {v1, v2, v3} of the vertices in ψ(f) such that η(e1) = {v1, v2}, η(e2) = {v2, v3},
and η(e3) = {v1, v3}.

The injectivity–assumption suffices to make this triangular complex vertex–faithful.

For vertex–faithful triangular complexes, the functor Poly inverts the functor Simp.

Remark 2.7.6. Let P be a vertex–faithful triangular complex. Then, Poly(Simp(P )) is
isomorphic to P .
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Proof. Let P = (V,E, F, η, ϕ), then Simp(P ) = (V,∆0 ∪∆1 ∪∆2), with

∆0 = {{v} | v ∈ V }, ∆1 = {η(e) | e ∈ E}, ∆2 = {(η]ϕ)(f) | f ∈ F}.

Since P is vertex–faithful, η : E → ∆1 and (η]ϕ) : F → ∆2 are bijections. Now,
Poly(Simp(P )) = (V,∆1,∆2, id∆1 , id∆2) and (idV , η, η]ϕ) is a polygonal isomorphism
from P to Poly(Simp(P )).

Corollary 2.7.7. Let (V,∆) be a homogeneous simplicial complex of dimension 2.
Then, there is (up to isomorphism) exactly one vertex–faithful triangular complex P
with Simp(P ) = (V,∆).

Proof. From Remark 2.7.3, we obtain the existence of such a P .
If P1 and P2 are two vertex–faithful triangular complexes with Simp(P1) = Simp(P2),

Remark 2.7.6 implies that P1 is isomorphic to P2.

At this point, Remark 2.7.6 and Remark 2.7.3 introduce a very deep connection be-
tween homogeneous simplicial complexes of dimension 2 and vertex–faithful triangular
complexes (in fact, it is an equivalence of categories).

For simplicial complexes, we introduced the notions of shadow and twilight morphism
(Definition 2.3.2). It stands to reason that we can transfer these concepts to vertex–
faithful triangular complexes as well.

Definition 2.7.8. Let P1 = (V1, E1, F1, η1, ϕ1) and P2 = (V2, E2, F2, η2, ϕ2) be two
vertex–faithful triangular complexes. A triple (µV , µE , µF ) of morphisms

µV : V1 → V2 µE : E1 → E2 µF : F1 → F2

is called polygonal shadow morphism if all x ∈ Pot(V1) with the properties

1. x 6= {v} for all v ∈ V1,

2. x 6= η1(e) for all e ∈ E1,

3. x 6= (η1]ϕ1)(f) for all f ∈ F1,

also satisfy

1. Y 6= {v} for all v ∈ V2,

2. Y 6= η2(e) for all e ∈ E2,

3. Y 6= (η2]ϕ2)(f) for all f ∈ F2,

for Y := {µV (y) | y ∈ x}. It is called polygonal twilight morphism if it is both a
polygonal morphism and a polygonal shadow morphism.

The functor Simp preserves shadow and twilight morphisms.
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Lemma 2.7.9. Let (µV , µE , µF ) : P 1 → P 2 be a polygonal shadow morphism between
the triangular complexes P 1 and P 2. Then, µV is a simplicial shadow morphism between
Simp(P 1) and Simp(P 2).

Proof. We use the names

P k = (V k, Ek, F k, ηk, ϕk) Simp(P k) = (V k,∆k).

Let x ∈ Pot(V 1)\∆1. Since x 6∈ ∆1 and ∆1 is given by elements of V 1, images of η1 and
images of ϕ1, Definition 2.7.8 is applicable. We deduce {µV (y) | y ∈ x} 6∈ ∆2.

2.7.2 Functor DressSurf → TwistPolyComp

In Section 2.4, the formalism of twisted polygonal complexes is introduced. The for-
malism of Dress–surfaces is introduced in Section 2.6. In this subsection, we explain in
which sense a Dress–surface can be interpreted as a twisted polygonal surface.

Definition 2.7.10. TwistDress is a functor from DressSurf to TwistPolyComp. If
P = (C, σ0, σ1, σ2) is a Dress surface, TwistDress(P ) is the twisted polygonal surface
(V,E, F,C, λ, σ0, σ1,∼) with

• V is the set of vertices (orbits of 〈σ1, σ2〉).

• E is the set of edges (orbits of 〈σ0, σ2〉).

• F is the set of faces (orbits of 〈σ0, σ1〉).

• λ : C → V × E × F maps each chamber c to the orbits in which it lies.

• The equivalence classes of ∼ are defined as [c]∼ := {c, σ2(c)}.

If µ is a Dress morphism, TwistDress(µ) = (µV , µE , µF , µ), with µV , µE, and µF defined
element–wise, is a twisted polygonal edge–covering.

Well–defined. We have to check several things in turn.

• Prove that TwistDress(P ) is a twisted polygonal complex, by checking the condi-
tions of Definition 2.4.1.

1. By Definition 2.6.1, σ0 and σ1 are involutions without fixed points.
2. Consider c1, c2 ∈ C with c1 6= c2 and c1 ∼ c2. This is only possible if
c2 = σ2(c1). Since vertices are the orbits of 〈σ1, σ2〉 and edges are the orbits
of 〈σ0, σ2〉, we have λ01(c1) = λ01(σ2(c1)).
By Definition 2.6.1, (σ0σ2)2 is the identity, so we also have

σ2(σ0(c1)) = σ0(σ2(c1)) = σ0(c2),

so σ0(c1) ∼ σ0(c2).
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3. Let c1 and c2 be two chambers with 〈σ0, σ2〉.c1 = 〈σ0, σ2〉.c2. This implies
c2 ∈ {c1, σ2(c1), σ0(c1), σ2σ0(c1)}. In the first two cases we have c2 ∼ c1, in
the last two we have c2 ∼ σ0(c1).

4. Let c1 and c2 be two chambers with 〈σ0, σ1〉.c1 = 〈σ0, σ1〉.c2. Then, c1 ∈
〈σ0, σ1〉.c2.

• Prove that TwistDress(P ) is a twisted polygonal surface, by checking the conditions
of Definition 2.4.24.
Since all edges of a Dress surface consists of at most 4 chambers, the twisted
polygonal complex cannot have any boundary edges (compare Definition 2.4.10).
Since the strong umbrella paths correspond to the orbits of 〈σ1, σ2〉, there are no
ramified vertices as well.

• Prove that (µV , µE , µF , µ) is a twisted polygonal morphism by checking the con-
ditions of Definition 2.4.5.
The λ–compatibility follows from the definition of λ. The other conditions follow
directly from Definition 2.6.8.

Since the functorial properties are obvious, this completes the proof.

Conversely, any twisted polygonal surface can be interpreted as a Dress–surface. To
formalise this, we define the involution σ2 for twisted polygonal surfaces.

Remark 2.7.11. Let (V,E, F,C, λ, σ0, σ1,∼) be a twisted polygonal surface. Then,

σ2 : C → C c 7→
{
c [c]∼ = {c}
ĉ [c]∼ = {c, ĉ}

is an involution.

With the preparation of Remark 2.7.11, any twisted polygonal surface can be described
as a Dress–surface. We take care to mention that not every twisted polygonal morphism
can be described by a Dress–morphism.

Lemma 2.7.12. Let S = (V,E, F,C, λ, σ0, σ1,∼) be a twisted polygonal surface.
Then, the Dress–surface T = (C, σ0, σ1, σ2) with σ2 from Remark 2.7.11 satisfies that

TwistDress(T ) is isomorphic to S.

Proof. In a twisted polygonal surface, the sets of vertices and edges can be reconstructed
(up to bijection) from (C, σ0, σ1,∼).

The functor TwistDress preserves the sets of vertices, edges, and faces, together with
the incidence relation.

Remark 2.7.13. Let S be a Dress–surface. There are canonical bijections between the
sets of vertices, edges, and faces of S, and those of TwistDress(S). In addition, these
bijections preserve the incidence relation.
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Proof. Since the vertices, edges, and faces of TwistDress(S) are defined by those of S,
they stand in bijection.

Consider the incidence relation and let x, y be vertices, edges, or faces. We have x ≺ y
in S if and only if x ∩ y 6= ∅. This is the case if and only if there is a chamber c ∈ C
with c ∈ x∩ y. By definition of λ in TwistDress(S), the sets x and y will be components
of λ(c). By Definition 2.4.3, they are incident in S if and only if they are incident in
TwistDress(S).

2.8 Combinatorial complexes and surfaces
In the previous sections, we described several different models for combinatorial surfaces.
They all have different advantages and drawbacks that make them more or less suitable
to certain applications.

• To model very regular combinatorial surfaces, the formalism of Dress–surfaces is
usually preferable since it makes it easy to employ group–theoretic arguments.

• To study modifications of combinatorial surfaces, where we just change a small
part of the surface, the model of polygonal surfaces might be preferable since it
makes the description of purely local changes easier.

However, there are also situations where we would like to switch between different models
or where we do not care about the specific model that we use. The first situation can be
partially resolved by using the appropriate functors, but the second one points to a more
general criticism: The models so far all claim to describe “combinatorial surfaces”, yet
are clearly distinct. Ideally, we would have a nice, coherent characterisation to explain
what a “combinatorial surface” is.

Unfortunately, we do not have this characterisation. This section aims to take a step
in that direction, without claiming to solve the problem. It gives a workable criterion to
decide which properties can be generalised over all models and might give some direction
to future research.

Definition 2.8.1. A combinatorial complex is either a twisted polygonal complex, a
polygonal complex, or a Dress–surface.

A combinatorial surface is either a twisted polygonal surface, a polygonal surface,
or a Dress–surface.

So far, these are just names that hide the specific formalisation. To go further, we
have to define which properties can be generalised. For example, all models so far allow
us to talk about “vertices”, “edges”, and “faces”. Also, all of them allow us to ask the
question whether a given edge is an “inner” or a “boundary” edge.

Of course, we cannot pick any random definition here. The conceptions of “inner
edges” should be compatible between the models. Since we describe the models as
categories, the compatibility between models is described by functors. Thus, we search
for properties that do not change if we apply the functors TwistDress and TwistPoly.
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Definition 2.8.2. A combinatorial property is a property that is defined for each
possible combinatorial complex (or surface) such that:

• A polygonal complex/surface P has the property if and only if TwistPoly(P ) has
the property.

• A Dress–surface S has the property if and only if TwistDress(S) has the property.

We give a rough intuition about which properties one can expect to be combinatorial:
If one can formulate the property for a concrete example, without relying on the specifics
of the objects, it usually turns out to be a combinatorial property.

Example 2.8.3. The notion of “combinatorial surface” in Definition 2.8.1 is a combi-
natorial property: It is defined in Definition 2.4.24 for twisted polygonal complexes and
in Definition 2.5.27 for polygonal complexes. By Remark 2.5.29 and Definition 2.7.10,
it is preserved under the functors.

2.8.1 Basic properties

In Section 2.8, we introduced the general description of combinatorial complexes, to-
gether with the crucial notion of combinatorial properties (Definition 2.8.2). In this
subsection, we give a few examples of some basic combinatorial properties.

Remark 2.8.4. The sets of vertices, edges, and faces, together with the transitive inci-
dence relation, are combinatorial properties.

Proof. Vertices, edges, and faces can be defined for twisted polygonal complexes (Defini-
tion 2.4.1), polygonal complexes (Definition 2.5.2), and Dress–surfaces (Definition 2.6.3).
The functors TwistPoly and TwistDress induce bijections between the corresponding sets
of different models.

The incidence relation is defined for twisted polygonal complexes (Definition 2.4.3),
polygonal complexes (Definition 2.5.2), and Dress–surfaces (Definition 2.6.4). The func-
tor TwistPoly preserves incidence by Remark 2.5.14. The functor TwistDress preserves
incidence by Remark 2.7.13.

Remark 2.8.5. The types of edges (inner, boundary, ramified) and vertices (inner,
boundary, ramified, chaotic) are combinatorial properties.

Proof. Definitions of vertex types: 2.4.23, 2.5.25, 2.6.7.
Definition of edge types: 2.4.10, 2.5.15, 2.6.7.
The compatibility is shown in Remark 2.5.26 and Remark 2.5.16 for TwistPoly. For

TwistDress, it follows from the observation that inner/boundary edges are mapped to
inner/boundary edges, as well as inner/boundary vertices.

At this point, the strength of the combinatorial description becomes clear: Since we
can talk about “inner edges” independently from the concrete model, we can use this
concept in further definitions.
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Definition 2.8.6. A combinatorial surface is closed if all of its edges are inner edges.

Well–defined. By Remark 2.8.4 and Remark 2.8.5, all terms of the definition are combi-
natorial properties.

Definition 2.8.7. Let C be a combinatorial complex, such that V is the set of vertices,
E the set of edges, and F the set of faces. The number χ(C) := |V | − |E|+ |F | is called
the Euler–characteristic of the surface.

Well–defined. By Remark 2.8.4, this is a combinatorial property.

Definition 2.8.8. Let C be a combinatorial surface. It is called spherical if χ(C) = 2.

Well–defined. This definition only requires the Euler–characteristic, which is defined for
all combinatorial surfaces in Definition 2.8.7.

Finally, we define triangular for twisted polygonal complexes and Dress–surfaces. Not
surprisingly, it also is a combinatorial property.

Definition 2.8.9. Let (V,E, F,C, λ, σ0, σ1,∼) be a twisted polygonal complex. We define
the map

| · | : F → N f 7→ 1
2 |λ
−1
2 (f)|.

Let (C, σ0, σ1, σ2) be a Dress–surface with set of faces F . We define the map

| · | : F → N f 7→ 1
2 |f |

A combinatorial complex is called triangular if |f | = 3 for each face f .

Well–defined. It suffices to show that | · | is a combinatorial property. It is defined for
polygonal complexes in Definition 2.5.4.

Consider the functor TwistPoly. The face f with |f | incident vertices gives rise to 2|f |
chambers c with λ2(c) = f . Therefore, TwistPoly preserves | · |.

Consider the functor TwistDress. A face is an orbit under 〈σ0, σ1〉. Each element is
mapped to the orbit under λ2. Thus, | · | is preserved by TwistDress.

2.9 When to use which formalism?
After reading (or skimming) this chapter, a question remains: Which of these formal-
isations for combinatorial complexes should be used? As Section 2.8 alludes to, most
properties can be found in all of them.

As shown in Subsection 2.5.1 and Subsection 2.7.2, twisted polygonal complexes are
the most general formalism. This would make them the natural choice, except for the
fact that the formalism of twisted polygonal complexes is much more complicated than
the other formalisms. Thus, one has to decide whether one needs the full generality.

53



Otherwise, one usually gains from restricting attention to a smaller class of combinatorial
complexes.

Lemma 2.7.12 shows that every twisted polygonal surface can be described by a Dress–
surface. Therefore, if one is only interested in surfaces, one can use the formalism of
Dress–surfaces. It is also more practical for group–theoretic considerations (which we
use in Chapter 9).

In contrast, the formalism of polygonal complexes is more combinatorial. It allows
the flexibility of ramified vertices and edges, but it restricts the shape of possible faces.
Intuitively, the vertices and edges incident to a face have to be distinct (none is incident
twice). Thus, surfaces like the torus

from the start of Section 2.4 cannot be modelled by polygonal complexes.
We can restrict the formalism of polygonal complexes even further if we demand that

they are triangular and vertex–faithful. By Remark 2.7.6, this allows us to describe the
combinatorial complexes by simplicial complexes. Their combinatorial structure is much
simpler (and more homogeneous) than that of polygonal complexes.
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3 Graph properties

Combinatorial complexes and surfaces can be interpreted and analysed in many different
ways. This chapter focuses on the different graphs that can be found within a combi-
natorial complex or surface. To do so, Section 3.1 contains a short introduction to the
concepts of graph theory that we will use, along with our notation for graphs.

In this chapter, we discuss three different graphs:

• In Section 3.2, we work with the vertex–edge–graph. This is a graph formed from
the vertices and edges of a combinatorial complex.
In this context, we discuss vertex–colourings of twisted polygonal complexes.

• In Section 3.3, we work with the face–edge–graph. This is a graph formed from the
faces and edges of a combinatorial surface.
In this context, we discuss edge–colourings and face–colourings of twisted triangu-
lar surfaces.

• In Section 3.4, we work with the boundary graph. This is a graph formed from the
boundary vertices and boundary edges of a combinatorial surface.

3.1 Basic graph definitions
This section defines the basic notation for the graphs that we use. The interested reader
can find an extensive treatment of many different aspects of graph theory in [35].

There are several different definitions for graphs in the literature. We choose a def-
inition that is compatible with the notation for polygonal complexes from Definition
2.5.2.

Essentially, a graph consists of vertices and edges, such that every edge is incident to
exactly two vertices.

Definition 3.1.1. A graph is a triple (V,E, η) where V is a set called vertices, E is
a set called edges, and η : E → Pot2(V ) is a map.
A vertex v ∈ V is called incident to an edge e ∈ E if v ∈ η(e).
If V = E = ∅, the graph is called empty.

Definition 3.1.2. Let (V,E, η) be a graph. The degree of a vertex v ∈ V is deg(v) :=
|{e ∈ E | v ∈ η(e)}|.

Definition 3.1.3. Let G = (V,E, η) be a graph. A subgraph is a graph (V ′, E′, η′) with

• V ′ ⊆ V .

55



• E′ ⊆ E.

• η′ = η|E′.

For W ⊆ V , the subgraph (W, {e ∈ E | η(e) ⊆ W}, η) is the vertex–induced sub-
graph of W , denoted by GW .

Definition 3.1.4. Let G be a graph with subgraphs (V 1, E1, η1) and (V 2, E2, η2). Their
intersection is the subgraph (V 1 ∩ V 2, E1 ∩ E2, η1

E1∩E2
).

Definition 3.1.5. Let (V,E, η) be a graph. It is called connected if for each pair of
vertices v, w ∈ V there is a sequence v1, v2, . . . , vn ∈ V n and a sequence e1, e2, . . . , en−1 ∈
En−1 such that

• v = v1 and w = vn.

• η(ek) = {vk, vk+1} for 1 ≤ k < n.

Definition 3.1.6. Let G1 = (V1, E1, η1) and G2 = (V2, E2, η2) be two graphs. A graph
morphism is a pair (µV , µE), where µV : V1 → V2 and µE : E1 → E2 are maps, such
that v ∈ η1(e) implies µV (v) ∈ η2(µE(e)).

The graph morphism (µV , µE) is a graph isomorphism if there is a graph morphism
(µ̂V , µ̂E) : G2 → G1 with µ̂V = (µV )−1 and µ̂E = (µE)−1.

Our definition for colouring mirrors the one in [35, Subsection 5.1.1].

Definition 3.1.7. Let (V,E, η) be a graph and M be a set. A colouring is a map
κ : V → M . If for every edge e ∈ E with η(e) = {v1, v2} we have κ(v1) 6= κ(v2), the
colouring is proper.

3.2 Vertex–edge–graph
In this section, we work with properties of the vertex–edge–graph. Since we are mainly
concerned with vertex–colourings of twisted polygonal complexes, we do not spend much
time on characterisations for the other formalisations of combinatorial complexes.

Definition 3.2.1. Let (V,E, F, η, ϕ) be a polygonal complex. Then, (V,E, η) is its
vertex–edge–graph.

To formalise this concept for twisted polygonal complexes, we would need to adapt our
graph definition to allow loops. Since the precise definition of vertex–edge–graphs is not
crucial to discuss vertex–colourings, we will not formulate this generalisation explicitly.

3.2.1 Vertex colourings
In this subsection, we define vertex colourings of a twisted polygonal complex P and
relate them to twisted polygonal morphisms from P into certain simple surfaces.

Our notion of vertex–colouring coincides with the notion of proper colouring of the
vertex–edge–graph ([35, Subsection 5.1.1]).
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Definition 3.2.2. Let P be a twisted polygonal complex with vertex set V , and n ∈ N.
A vertex–n–colouring is a map cV : V → {1, . . . , n},

cV (λ0(c)) 6= cV (λ0(σ0(c)))

for any chamber c.

Our first result is to relate vertex–3–colourings to morphisms into a triangle. This
is a well–known result. In graph–theoretical terms, it says that a graph G has an n–
colouring if and only if there is a graph morphism from G to the complete graph Kn.
Extensions of this result to combinatorial surfaces are presented in [12, Remark 1.6] and
[10, Folgerung 2.61].

Definition 3.2.3. The triangle is the twisted polygonal surface (V,E, F,C, λ, σ0, σ1,∼),
with

V = {v1, v2, v3}, E = {e1, e2, e3}, F = {f1}, C = {c1, . . . , c6},

together with

λ : C → V × E × F, ck 7→



(v1, e1, f1) k = 1
(v2, e1, f1) k = 2
(v2, e2, f1) k = 3
(v3, e2, f1) k = 4
(v3, e3, f1) k = 5
(v1, e3, f1) k = 6

σ0 = (c1, c2)(c3, c4)(c5, c6),
σ1 = (c1, c6)(c2, c3)(c4, c5),

and ∼ the equivalence relation “equality”.

The triangle can be illustrated as follows:

1 2
3

45

6 f1

e1

e3 e2

v1 v2

v3

Lemma 3.2.4. A twisted triangular complex P = (V,E, F,C, λ, σ0, σ1,∼) has a vertex–
3–colouring if and only if there is a twisted polygonal morphism from P to the triangle
from Definition 3.2.3.
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Proof. Let T = (V T , ET , F T , CT , λT , σT0 , σ
T
1 ,∼T ) be the triangle.

Assume there is a twisted polygonal morphism (µV , µE , µF , µC) : P → T . We define
a vertex–3–colouring as follows:

cV : V → {1, 2, 3} v 7→


1 µV (v) = v1

2 µV (v) = v2

3 µV (v) = v3

It is well–defined, since any edge e of P is mapped to an edge of T , and any edge in T
has two distinct vertices, the vertices incident to e also have to be distinct.

Conversely, assume cV is a vertex–3–colouring of P . We construct a map cE : E →
{{1, 2}, {1, 3}, {2, 3}} by cE(e) = {cV (v) | v ≺ e}. Then, we define the twisted polygonal
morphism

µV (v) := vcV (v)

µE(e) :=


e1 cE(e) = {1, 2}
e2 cE(e) = {2, 3}
e3 cE(e) = {1, 3}

µF (f) := f1

µC(c) :=



c1 cV (λ0(c)) = 1 ∧ cE(λ1(c)) = {1, 2}
c2 cV (λ0(c)) = 2 ∧ cE(λ1(c)) = {1, 2}
c3 cV (λ0(c)) = 2 ∧ cE(λ1(c)) = {2, 3}
c4 cV (λ0(c)) = 3 ∧ cE(λ1(c)) = {2, 3}
c5 cV (λ0(c)) = 3 ∧ cE(λ1(c)) = {1, 3}
c6 cV (λ0(c)) = 1 ∧ cE(λ1(c)) = {1, 3}.

We have to check that this satisfies the condition of Definition 2.4.5.
1. The λ–compatibility follows from close inspection of the definitions.

2. Consider c ∈ C and σ0(c). They satisfy λ1(c) = λ1(σ0(c)), so they are mapped to
two chambers in CT that are in an orbit of σT0 .
The same argument applies to σ1.

3. Since ∼T is equality, we have to show that two ∼–equivalent chambers are mapped
to the same chamber in CT . This is clear since two ∼–equivalent chambers have
the same values with respect to λ0 and λ1.

4. Since P is triangular, the non–degeneracy condition is fulfilled.
We mention in passing that Lemma 3.2.4 can be generalised to prove the equivalence

between these two statements for a twisted polygonal complex P :
• P is vertex–4–colourable.

• There is a twisted polygonal morphism from P to the tetrahedron, which was
defined in Example 2.6.5.
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3.3 Face–edge–graph
In this section, we work with properties of the face–edge–graph. Since we are mainly
concerned with edge– and face–colourings of twisted polygonal complexes, we do not
spend much time on alternative characterisations.

Definition 3.3.1. Let (V,E, F, η, ϕ) be a polygonal surface with set of inner edges EI .
Then, (F,EI , ν) with

ν : EI → Pot2(F ) e 7→ {f ∈ F | e ≺ f}

is its face–edge–graph.

To formalise this concept for twisted polygonal complexes, we would need to adapt
our graph definition to allow loops. Since the precise definition of face–edge–graphs is
not crucial to discuss colourings, we will not formulate this generalisation explicitly.

It will become apparent in Section 7.3 that the possibility to colour the face–edge–
graph with two colours is a very important notion.

Definition 3.3.2. Let (V,E, F,C, λ, σ0, σ1,∼) be a twisted triangular surface. A face–
2–colouring is a map κ : F → {1, 2} such that κ(λ2(c1)) 6= κ(λ2(c2)), whenever c1 ∼ c2
and c1 6= c2 holds.

3.3.1 Edge colourings
In this subsection, we work with edge colourings of twisted triangular complexes. We are
interested in Grünbaum colourings, i. e. edge colourings of twisted triangular complexes
where the three edges of a face have different colours. In [46], several of these colourings
are constructed for triangulations of surfaces. To get an overview over this field, we
recommend [48], which also explains the origin of the term. In [13, Version 0.5], these
colourings are called wild colourings.

Definition 3.3.3. Let (V,E, F,C, λ, σ0, σ1,∼) be a twisted triangular complex. A map
cE : E → {1, 2, 3} is a Grünbaum colouring (or wild colouring) if

{c(e) | e ≺ f} = {1, 2, 3}

for each face f ∈ F .

Grünbaum colourings are especially interesting for twisted triangular surfaces, since
we can compare the colours of adjacent faces. There are two different ways in which
adjacent faces can be coloured:

59



In the left image, the colours are mirrored across the edge. In the case on the right, they
are rotated around the centre of the edge. This motivates the term local symmetry to
describe these situations.

Formalising this distinction is a bit more difficult, since we have to describe “the edges
adjacent to a given edge”. To do so properly, we use the chambers at one edge.

c1 c2

σ1(c1) σ1(c2)

e

λ1(σ1(c1)) λ1(σ1(c2))

Definition 3.3.4. Let T = (V,E, F,C, λ, σ0, σ1,∼) be a twisted triangular surface and
cE : E → {1, 2, 3} a Grünbaum colouring. Let e ∈ E and {c1, c2} ⊆ C a ∼–equivalence
class with λ1(c1) = λ1(c2) = e. The local symmetry of e is

• M if cE(λ1(σ1(c1))) = cE(λ1(σ1(c2))).

• R if cE(λ1(σ1(c1))) 6= cE(λ1(σ1(c2))).

If all edges with colour k have the same local symmetry Lk, we call cE an L1L2L3–
colouring.

Well–defined. We have to show that the definition of local symmetry is independent
from the choice of ∼–equivalence classes. Let e be an edge with ∼–equivalence classes
{c1, c2} and {c3, c4}, such that σ0(c1) = c3 and σ0(c2) = c4.

c1 c2

c3 c4

e

λ1(σ1(c1))

λ1(σ1(c3))

Then, the edges λ1(σ1(c1)) and λ1(σ1(c3)) are distinct (otherwise, there would be at
most two edges incident to the face λ2(c1), contradicting the existence of a Grünbaum
colouring for T ).
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Since cE is a Grünbaum colouring, the colours of these edges are also distinct. Since
this holds for {c2, c4} as well, the claim follows.

In the proof of Lemma 3.2.4, we constructed an edge colouring from a given vertex
colouring. We can generalise this process.

Remark 3.3.5. Let (V,E, F,C, λ, σ0, σ1,∼) be a twisted triangular complex and cV :
V → {1, 2, 3} a vertex–3–colouring. Then,

cE : E → {1, 2, 3} e 7→


1 {cV (v) | v ≺ e} = {2, 3}
2 {cV (v) | v ≺ e} = {1, 3}
3 {cV (v) | v ≺ e} = {1, 2}

is a Grünbaum colouring.

Proof. Let f ∈ F . Then, λ−1
2 (f) consists of six chambers, which give at most three

vertices. Since cV is a vertex–3–colouring, Definition 3.2.2 ensures that there are three
distinct vertices incident to f .

For a given c ∈ λ−1
2 (f), we have

{v ∈ V | v ≺ λ1(c)} = {λ0(c), λ0(σ0(c))},

thus all three edges incident to f have different images under cE .

Lemma 3.3.6. A twisted triangular surface with MMM–colouring also has a vertex–
3–colouring.

Proof. Call the surface S = (V,E, F,C, λ, σ0, σ1,∼) and the MMM–colouring cE . Con-
sider a vertex v ∈ V . Since S is a surface, the vertex v is either an inner or a boundary
vertex. By Definition 2.4.23, there is a unique maximal strong umbrella–path around v,
i. e. a sequence

(c1, c2, c3, . . . , c2n)
with {c1, c2, . . . , c2n} = λ−1

0 (v), as well as

• c2k = σ1(c2k−1) for 1 ≤ k ≤ n.

• c2k ∼ c2k+1 for 1 ≤ k < n.

Since cE is an MMM–colouring, c2k ∼ c2k+1 implies cE(λ1(c2k−1)) = cE(λ1(c2k+2)) for
1 ≤ k < n− 1. Since λ1(c2k) = λ1(c2k+1) for 1 ≤ k < n, this implies

|{cE(λ1(ci)) | 1 ≤ i ≤ 2n}| = 2.

Since cE can only take three values, there are three two–element–subsets. We define
cV such that each vertex gets mapped to the value that does not appear in its subset.

It remains to be shown that µV (λ0(c)) 6= µV (λ0(σ0(c))) for any chamber c ∈ C. Let
v := λ0(c) and v∗ := λ0(σ0(c)). Then, λ−1

0 (v) contains both c and σ1(c). Also, λ−1
0 (v∗)

contains σ1σ0(c). These three chambers correspond to the three different edges of the
face λ2(c), so their edges are mapped differently under cE . Thus, the map µV takes
different values on v and v∗.
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It is possible to generalise this result to arbitrary Grünbaum colourings (these corre-
spond to vertex–4–colourings), but we will not do this here. Unfortunately, this only
works for spherical surfaces. The proof relies on the following theorem of Tait, which
we cite from [35, Subsection 5.2.2].

Theorem 3.3.7 (Tait,1880,[67]). A plane graph G is 4–colourable if and only if its dual
G∗ is 3–edge–colourable.

Combining this result with the generalisation mentioned at the end of Subsection 3.2.1,
we obtain an equivalence between Grünbaum colourings of spherical twisted triangular
surfaces and twisted polygonal morphisms to the tetrahedron.

3.4 Boundary graph
In this section, we work with the boundary graph of a polygonal surface. The boundary
graph is built from boundary vertices and boundary edges.

Definition 3.4.1. Let S = (V,E, F, η, ϕ) be a polygonal surface with boundary vertices
VB and boundary edges EB. The graph ∂S := (VB, EB, ηVB ) is called boundary graph
of S.

The boundary graph has an interesting structure: It consists of several “cycles”. In
Subsection 3.4.1, we formalise this notion by defining cyclic graphs. We also define cyclic
intervals, a generalisation of intervals in a partially ordered set to a cyclic situation. In
Subsection 3.4.2, we introduce the notion of cyclic sequences and growth–control. In
the final Subsection 3.4.3, we define SB–surfaces (surfaces with exactly one boundary
component). These particular surfaces underlie the main construction in Chapter 8.

3.4.1 Cyclic graphs and intervals
This subsection formalises the notions of cyclic graphs and cyclic intervals. We mainly
care about them because of their involvement in Chapter 8. There, we work with simpli-
cial surfaces whose boundary is connected, and “extend” the surface along that boundary.
Thus, we need a concise description of this situation.

Definition 3.4.2. A cyclic graph is a finite connected graph, in which every vertex
has degree 2.

A cyclic interval is a connected subgraph of a cyclic graph. In a cyclic interval I,
vertices of degree 1 are called boundary vertices.

Our definition of cyclic intervals is the discrete version of circular arcs, that appear
for example in [21].

Example 3.4.3. Let n ∈ N with n ≥ 2. Then, (Z/nZ,Z/nZ, η) with

η : Z/nZ→ Pot2(Z/nZ) k 7→ {k, k + 1}

is a cyclic graph. For n = 6, we can illustrate it like this:
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The subgraph consisting of the vertices {0, 1, 5} and the edges {0, 5} is a cyclic interval.
The subgraph with vertices {1, 2, 4} and edges {1} is not a cyclic interval.

Next, we analyse the shape of cyclic intervals more closely.

Lemma 3.4.4. Let (V,E, η) be a cyclic graph and I a cyclic interval. Then, one of the
following cases holds:

1. I = (V,E).

2. I has no vertices and no edges.

3. I has exactly one vertex and no edge.

4. I has exactly two boundary vertices.

With this knowledge about interval shapes, we can analyse how the intersection of two
cyclic intervals looks like. To facilitate this, we prove a formal lemma about connectivity
in a cyclic graph, that essentially states that there are exactly two paths from one vertex
to another one.

Lemma 3.4.5. Let (V,E, η) be a cyclic graph and v1, v2 ∈ V . Then, there are E1 ⊆ E
and E2 ⊆ E with E1 ∪ E2 = E and E1 ∩ E2 = ∅, such that the edge set of any cyclic
interval containing v1 and v2 has to contain E1 or E2.

Proof. If v1 = v2, we can choose E1 := ∅ and E2 := E.
Otherwise, consider a cyclic interval I containing v1 and v2. Since I is connected,

there has to be a sequence (v1, w1, w2, . . . , wk, v2) ∈ V k+2 such that each two adjacent
vertices are incident to a common edge. We can assume that the path does not contain
repetitions. Since every vertex is incident to exactly two edges, knowing the edge between
v1 and w1 determines the path. There are two options here. Each of them defines a
non–repeating path from v1 to v2 (the graph is finite and connected). The edge sets of
these two paths are E1 and E2.

Now, we can analyse the shape of the intersection in detail.

Lemma 3.4.6. Let (V,E, η) be a cyclic graph and I, J cyclic intervals. If the intersec-
tion I ∩ J is not empty, it has one of the following forms:
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1. It is a cyclic interval contained in both I and J

2. It consists of two disjoint cyclic intervals contained in both I and J . Each of these
cyclic intervals contains a boundary vertex of I and one of J .

Proof. If the intersection is empty or connected, we have one of the first cases.
Now assume that I ∩ J induces a disconnected graph. Then, there are vertices v1

and v2 in different connected components. Applying Lemma 3.4.5 to it, there are two
edge sets E1 and E2 contained in the edge sets of I and J . If both contained the same
minimal edge set, v1 and v2 would be connected in I ∩ J . Therefore, we can assume
E1 ⊆ EI and E2 ⊆ EJ .

Consider any other vertex v3 ∈ I ∩J . Without loss of generality, assume v3 lies on the
path E1. The vertex v3 has to be connected to v1 in J . Since v3 lies on a path between
v1 and v2 (and paths are unique), there has to be a path from v3 to v1 or v2 in J . In
particular, v3 cannot lie in a third connected component.

Example 3.4.7. Consider the cyclic graph from example 3.4.3 with n = 6. We consider
the following three cyclic intervals:

• I has vertices {0, 1, 2, 3} and edges {0, 1, 2}.

• J has vertices {0, 2, 3, 4, 5} and edges {2, 3, 4, 5}.

• K has vertices {2, 3, 4, 5} and edges {2, 3, 4}.

Then, we have the following intersections:

• I ∩ J has vertices {0, 2, 3} and edges {2}. It is the disjoint union of the cyclic
graphs with vertices {0} and {2, 3}.

• I ∩K = K.

• J ∩K is the cyclic interval with vertices {2, 3} and edge {2}.

Remark 3.4.8. Let (V,E, η) be a cyclic graph and V be the disjoint union of W1 and
W2 such that W1 and W2 both induce a cyclic interval with at least 2 elements. Then
each boundary vertex of W1 is adjacent to exactly one boundary vertex of W2.

3.4.2 Cyclic sequences

In this subsection, we define the notion of cyclic sequences. This will be crucial in the
main construction of Chapter 8.

Definition 3.4.9. Let (V,E, η) be a cyclic graph and M a set. A cyclic M–sequence
is a map ϕ : V →M .

Example 3.4.10. Consider the cyclic graph from Example 3.4.3 with n = 6. Then,
Z/6Z→ Z/6Z, k 7→ 2k is a cyclic Z/6Z–sequence. We illustrate it like this:
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0
0

1
2

2 4

3
0

4
2

5
4

0

1

23

4

5

We are primarily concerned with cyclic sequences over N. Since we want to use these
sequences to “control” the growth of certain extensions, we need a way to measure when
a boundary becomes too “unbalanced”.

Definition 3.4.11. Let G = (V,E, η) be a cyclic graph, ϕ : V → N a cyclic N–sequence,
and GW a cyclic interval. The defect–sum of W with respect to ϕ is defined as

dϕ(W ) :=
∑
w∈W

(3− ϕ(w)).

If dϕ(W ) ≤ 2, we call GW defect–controlled. The sequence ϕ is growth–controlled
if every cyclic interval is defect–controlled and dϕ(V ) ≤ 0 holds.

Example 3.4.12. Consider the cyclic graph from Example 3.4.3 with n = 6. We repre-
sent cyclic sequences like in Example 3.4.10.

1. Consider the cyclic N–sequence illustrated here:

0
2

1
2

2
3

3
2

4
4

5
4

0

1

23

4

5

It is not defect–controlled since the cyclic interval induced by the vertices {0, 1, 2, 3}
has defect–sum 3.

2. Consider the cyclic N–sequence illustrated here:
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0
2

1
2

2 4

3
2

4
2

5
4

0

1

23

4

5

Unlike in the previous case, the cyclic interval induced by the vertices {0, 1, 2, 3}
now has defect–sum 2. However, the cyclic interval {0, 1, 2, 3, 4} has defect–sum
3, so this sequence is not growth–controlled either.

3. Consider the cyclic N–sequence illustrated here:

0
2

1
3

2
3

3
2

4
3

5
4

0

1

23

4

5

This cyclic sequence is defect–controlled. But it is not growth–controlled, since the
defect–sum of all vertices is 1.

4. Consider the cyclic N–sequence illustrated here:
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0
2

1
4

2
2

3
3

4
3

5
4

0

1

23

4

5

This cyclic sequence is growth–controlled.

The main result of this subsection is the construction of larger growth–controlled
cyclic sequences from smaller ones. For example, consider the growth–controlled cyclic
N–sequence from Example 3.4.12:

0
2

1
4

2
2

3
3

4
3

5
4

0

1

23

4

5

Is it possible to replace the values of the vertices in {1, 2} by 3? Could we even add a
vertex in between and set the values to 2, 3, 4 (in order)?

In these kinds of replacements, a part of the cyclic graph stays the same, while a
(usually smaller) part changes. We now formally describe how the replacement has to
interact with the remaining part to stay growth–controlled. Recall the notation for the
vertex–induced subgraph from Definition 3.1.3.

Lemma 3.4.13. Let G1 = (V1, E1, η1) and G2 = (V2, E2, η2) be cyclic graphs with cyclic
N–sequences ϕ1 : V1 → N and ϕ2 : V2 → N. Assume

1. Vk = Ik ] Jk for k ∈ {0, 1}.

2. GkIk and GkJk are cyclic intervals.

3. ρ : G1
J1
→ G2

J2
is a graph isomorphism with ϕ1(j) = ϕ2(ρ(j)) for all j ∈ J1.
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4. ϕ1 is growth–controlled.

Then,

1. If dϕ2(I2) ≤ dϕ1(I1), then dϕ2(V2) ≤ 0.

2. Let S be a cyclic interval contained in I2. Denote the set of adjacent boundary
vertices in J2 by B(S). If there is a cyclic interval T contained in I1, such that
• ρ−1(B(S)) ⊆ B(T ), where B(T ) is the set of adjacent boundary vertices of T

in J1, and
• dϕ1(T ) ≥ dϕ2(S),

all cyclic intervals of V2 that intersect I2 in S are defect–controlled.

3. Let S be the disjoint union of two cyclic intervals contained in I2 such that each
of them contains a boundary vertex of I2.
If there is a disjoint union T of two cyclic intervals contained in I1 (each contain-
ing a boundary vertex) with dϕ2(S) ≤ dϕ1(T ), then all cyclic intervals of I2 that
intersect I2 in S are defect–controlled.

Proof. The first claim follows from an easy calculation:

dϕ2(V2) = dϕ2(I2) + dϕ2(J2) ≤ dϕ1(I1) + dϕ1(J1) = dϕ1(V1) ≤ 0

For the second claim, consider a cyclic interval C with C ∩ I2 = S. By assumption
of the lemma, there is a cyclic interval T ⊆ I1. We want to show that ρ−1(C ∩ J2) ∪ T
is a cyclic interval of V1. By Definition 3.4.2, it is sufficient to show that the induced
subgraph is connected.

Let v ∈ ρ−1(C ∩ J2). Since C is a cyclic interval and S 6= ∅, there is a sequence of
pairwise adjacent vertices

(ρ(v), v1, v2, . . . , vk, s),

in C, such that s ∈ S and all vi 6∈ S. Then, vk is adjacent to a boundary vertex of S.
By assumption on T , ρ−1(vk) is also adjacent to a boundary vertex of T . Thus, there is
a t ∈ T such that

(v, ρ−1(v1), ρ−1(v2), . . . , ρ−1(vk), t)

is a sequence of pairwise adjacent vertices in ρ−1(C ∩ J2) ∪ T .
Now, we have

dϕ2(C) = dϕ2(S) + dϕ2(C ∩ J2)
≤ dϕ1(T ) + dϕ1(ρ−1(C ∩ J2))
= dϕ1(ρ−1(C ∩ J2) ∪ T ) ≤ 2.

The third situation can only appear if J2 ⊆ C. Since the two disjoint cyclic intervals
T ⊆ V1 contain both boundary vertices of I1, we can construct a cyclic interval just as
in the second case.
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Example 3.4.14. Let (Z/6Z,Z/6Z, η) be the cyclic graph from Example 3.4.3. Consider
the following two cyclic N–sequences, illustrated like in Example 3.4.10.

0
2

1
4

2
2

3
3

4
3

5
4

0

1

23

4

5 0
2

1
3

2
3

3
3

4
3

5
4

0

1

23

4

5

We have seen in Example 3.4.12 that the sequence on the left (denoted ϕ1) is growth–
controlled. We would like to apply Lemma 3.4.13 to show that the sequence on the right
(denoted ϕ2) is growth–controlled.

To do so, we have to split the cyclic graph into two cyclic intervals. We choose the
vertex partitions

I1 = I2 = {1, 2} J1 = J2 = {0, 3, 4, 5}.

The graph isomorphism ρ : G1
J1
→ G2

J2
is the identity.

Now we apply the individual conclusions of Lemma 3.4.13.

1. Since dϕ2(I2) = 0 + 0 = 1 + (−1) = dϕ1(I1), we have dϕ2(V2) ≤ 0.

2. There are three cyclic intervals contained in I2:

• Consider the cyclic interval induced by the vertex set {1} ⊆ I2. The adjacent
boundary vertices in J2 are {0}. We choose the cyclic interval {1, 2} ⊆ I1,
since its adjacent boundary vertices are {0, 3} ⊇ {0} and dϕ1({1, 2}) = 0 =
dϕ2({1}).

• Consider the cyclic interval induces by the vertex set {2} ⊆ I2. The adjacent
boundary vertices in J2 are {3}. We choose the cyclic interval {2} ⊆ I1 since
it has the same adjacent boundary vertices and dϕ1({2}) = 1 ≥ 0 = dϕ2({2}).

• For the cyclic interval induced by I2 itself, we also choose the cyclic interval
{1, 2} = I1.

3. The final case cannot happen since the boundary vertices of I2 are adjacent.

Thus, all cyclic intervals are defect–controlled with respect to ϕ2. Thus, ϕ2 is growth–
controlled.
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3.4.3 SB–surfaces
In the previous subsections, we defined cyclic graphs and sequences. The boundary
graph of a polygonal surface (Definition 3.4.1) is the disjoint union of such graphs.

Lemma 3.4.15. Each connected component of the boundary graph of a finite polygonal
surface is cyclic.

Proof. We check the properties of Definition 3.4.2. Since the surface is finite, the bound-
ary graph is finite. By definition, each connected component is connected. In a polygonal
surface, every boundary vertex lies in exactly one non–cyclic umbrella, that contains ex-
actly two boundary edges.

This has a combinatorial implication for the relation between boundary vertices and
edges.

Lemma 3.4.16. Let S be a finite combinatorial surface with boundary vertices VB and
boundary edges EB. Then, |VB| = |EB|.

Proof. For polygonal surfaces, this follows from Lemma 3.4.15.
For twisted polygonal surfaces and Dress–surfaces, we consider the chambers that lie

at boundary edges. For each boundary edge, there are two of them. Each boundary
vertex lies in a unique maximal umbrella path that contains two of these chambers. The
claim follows.

In Chapter 8, it is crucial to consider simplicial surfaces with a single boundary com-
ponent. Thus, we give these surfaces a special name.

Definition 3.4.17. A single boundary surface (or SB–surface) is a strongly con-
nected, vertex–faithful simplicial surface S, where ∂S has exactly one boundary compo-
nent.
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4 Degree–based properties
This chapter explores properties that rely on the degrees of a combinatorial surface. In
Section 4.1, we introduce the concepts of degree and its complement, the defect.

Section 4.2 uses the concept of degree to define extended surfaces. If we consider a
surface with boundary that is part of a larger surface, modelling it as an extended surface
allows us to describe the immediate surroundings of the small surface.

Separate from the sections before, Section 4.3 discusses regular Dress–surfaces, whose
degrees are all equal to a fixed number d ∈ N. We show how these regular surfaces relate
to certain subgroups of triangle groups and how to describe these subgroups.

4.1 Degrees and Defects
In this section, we introduce the concepts of degree (Definition 4.1.1) and defect (Defi-
nition 4.1.4), which complement each other.

The degree of a vertex should count the number of incident faces (differing from the
graph–theory literature, where the degree counts the number of edges). Unfortunately,
this description is not useful if a vertex can be incident to a face twice – in this case we
would like to count with multiplicity. For that reason, we have different definitions for
the different categories of combinatorial surfaces.

Definition 4.1.1. Let (V,E, F, η, ϕ) be polygonal surface. For any v ∈ V we define its
degree deg(v) as the number of faces incident to v. Let (V,E, F,C, λ, σ0, σ1,∼) be a
twisted polygonal surface. For any v ∈ V , we define its degree deg(v) as 1

2 |λ
−1
0 (v)|. Let

(C, σ0, σ1, σ2) be a Dress–surface. For any vertex x, we define its degree deg(x) as 1
2 |x|.

Polygonal surfaces show that the degree differs from the number of incident edges.

Remark 4.1.2. Let (V,E, F, η, ϕ) be a polygonal surface and v ∈ V . If v is an inner
vertex, then the number of incident edges is deg(v). If v is a boundary vertex, the number
of incident edges is deg(v) + 1.

If we relate the numbers of vertices, edges, and faces to each other, the concept of
degree appears naturally. In fact, these relations are a crucial property of the degree.

Lemma 4.1.3. Let S be a triangular combinatorial surface. Let VI be the set of inner
vertices and VB be the set of boundary vertices. Then, we have:

2|E| =
∑
v∈VI

deg(v) +
∑
v∈VB

(1 + deg(v))

3|F | =
∑

v∈VI∪VB

deg(v).
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Proof. We prove this statement for the different combinatorial surfaces in turn.

• For a simplicial surface, we obtain the formulas by double–counting the incident
vertex–edge–pairs (with Remark 4.1.2) and the incident vertex–face–pairs.

• For a twisted triangular surface, we count the number of chambers in several
different ways:

C =
⊎
v∈V

λ−1
0 (v) =

⊎
e∈E

λ−1
1 (e) =

⊎
f∈F

λ−1
2 (f)

For the vertices, Definition 4.1.1 gives

|C| =
∑
v∈V
|λ−1

0 (v)| =
∑
v∈V

2 deg(v).

For the edges, we distinguish between the set of inner edges EI and the set of
boundary edges EB (compare Definition 2.4.10):

|C| =
∑
e∈E
|λ−1

1 (e)| =
∑
e∈EI

|λ−1
1 (e)|+

∑
e∈EB

|λ−1
1 (e)| = 4|EI |+ 2|EB|.

Since all faces are triangular, Definition 2.8.9 implies

|C| =
∑
f∈F
|λ−1

2 (f)| = 6|F |.

We obtain the second equality by combining the equations for vertices and faces.
We obtain the first equality by combining the equations for vertices and edges, if
we use |EB| = |VB| from Lemma 3.4.16.

• For a triangular Dress–surface, partition the set of chambers into different orbits.
It is easy to see that we get the same results as for twisted polygonal surfaces.

In many situations, it is more convenient to consider how much the degree of a vertex
differs from 6. This relies on an interesting heuristic: Properties of combinatorial surfaces
are very often related to differential–geometric properties of equilateral embeddings.
Here, the defect is the discrete analogue to curvature. The angular defect from the
literature (compare [66, Subsection 4.1] and [45]) is a variation of our defect.

Definition 4.1.4. Let S be a combinatorial surface. For any inner vertex v ∈ V , we
define its defect as def(v) := 6−deg(v). For any boundary vertex, the defect is defined
as def(v) := 3− deg(v).

A vertex with non–zero defect is also called a singularity.

We can express the Euler–characteristic in terms of the defects, as a discrete version
of the famous Gauss–Bonnet–theorem (see [38, Theorem 3.10] or [64, Section 4.8] for the
continuous version and [66, Subsection 4.1] or [45] for the discrete variant).

Lemma 4.1.5. Let S be a triangular combinatorial surface and V the set of vertices.
Then,

6χ =
∑
v∈V

def(v). (4.1)
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Proof. We denote the set of inner vertices by VI and the set of boundary vertices by VB.
From Lemma 4.1.3, we obtain

2|E| =
∑
v∈VI

deg(v) +
∑
v∈VB

(1 + deg(v)) (4.2)

and
3|F | =

∑
v∈V

deg(v). (4.3)

We insert these equations into the formula for the Euler–characteristic:

6χ = 6|V | − 6|E|+ 6|F |
= 6|V | − 3

∑
v∈VI

deg(v)− 3
∑
v∈VB

(1 + deg(v)) + 2
∑
v∈V

deg(v)

= 6|VI |+ 6|VB| − 3
∑
v∈VI

deg(v)− 3|VB| − 3
∑
v∈VB

deg(v) + 2
∑
v∈V

deg(v)

= 6|VI |+ 3|VB| −
∑
v∈VI

deg(v)−
∑
v∈VB

deg(v)

=
∑
v∈VI

(6− deg(v)) +
∑
v∈VB

(3− deg(v)) =
∑
v∈V

def(v)

4.2 Extended surfaces
Sometimes, we would like to interpret a combinatorial surface with boundary as a sub-
surface of a larger surface. In this section, we develop a formalism that allows us to treat
a combinatorial surface “as if” it were such a subsurface, but without constructing the
larger surface explicitly.

The core idea is to “pretend” that the degree of the boundary vertices is larger than
it actually is. To do so, we introduce the notion of external degree, that measures how
many “invisible” faces are incident to a boundary vertex.

Definition 4.2.1. Let S be a combinatorial surface and V its set of vertices. An ex-
ternal degree map is a map d̂eg : V → N such that

• All inner vertices v ∈ V satisfy d̂eg(v) = 0.

• All boundary vertices v ∈ V satisfy d̂eg(v) > 0.

The tuple (S, d̂eg) is called an extended combinatorial surface.

If we restrict the external degree map to the boundary vertices of a SB–surface (com-
pare Definition 3.4.17), we obtain a cyclic N–sequence (compare Definition 3.4.9).

Definition 4.2.2. An extended SB–surface is an extended simplicial surface (S, d̂eg),
where S is a single boundary surface. The cyclic N–sequence d̂eg|VB is called external
degree sequence.
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Example 4.2.3. An extended SB–surface can be visualised like this:

1

533

4

4

3 2 6

0

Here, the blue numbers are the external degrees of the corresponding vertices.

Now, we can lift the concept growth–controlled from cyclic sequences to extended
SB–surfaces.

Definition 4.2.4. An extended SB–surface is growth–controlled if its external degree
sequence is growth–controlled and does not contain 1.

4.2.1 Extended defects

Intuitively, the external degree of a vertex corresponds to the number of faces that are
incident to that vertex but do not lie in the surface. With this interpretation, every
vertex can be treated like an inner vertex. In particular, we can speak of the defect with
respect to the external degree.

Definition 4.2.5. Let S be an extended combinatorial surface. For each vertex v, we
define the extended defect as d̂ef(v) := 6− deg(v)− d̂eg(v).

Example 4.2.6. Using the extended SB–surface from Example 4.2.3 and writing the
extended defects with red labels, we obtain:

1

001

0

0

1 1 -1

-1

Definition 4.1.4 called vertices with non–zero defect singularities. In an extended
combinatorial surface, every vertex should behave like an inner vertex, so they are non–
singular if their degree is 6.

Definition 4.2.7. Let (S, d̂eg) be an extended combinatorial surface. A vertex v is
regular if deg(v) + d̂eg(v) = 6.
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Evaluating the Definition 4.1.4 of defect allows us to relate defect and extended defect.

Remark 4.2.8. Let (S, d̂eg) be an extended combinatorial surface. Any inner vertex v
satisfies def(v) = d̂ef(v). Any boundary vertex v satisfies d̂ef(v) = def(v) + 3− d̂eg(v).

We can reformulate the relation between defects and the Euler–characteristic.

Corollary 4.2.9. Let (S, d̂eg) be an extended triangular combinatorial surface with ver-
tex set V . Let VB be the set of all boundary vertices. Then, we have∑

v∈VB

(3− d̂eg(v)) =
∑
v∈V

d̂ef(v)− 6χ.

Proof. Let VI be the set of all inner vertices. The claim follows from Lemma 4.1.5 and
Remark 4.2.8:

6χ =
∑
v∈V

def(v)

=
∑
v∈VI

def(v) +
∑
v∈VB

def(v)

=
∑
v∈VI

d̂ef(v) +
∑
v∈VB

(d̂ef(v) + d̂eg(v)− 3)

=
∑
v∈V

d̂ef(v) +
∑
v∈VB

(d̂eg(v)− 3)

4.2.2 Extended morphisms
So far, we extended combinatorial surfaces. But we can also extend morphisms in such
a way. We just have to take care that the total degree (the sum of degree and external
degree) does not change.

Definition 4.2.10. Let (S, d̂egS) and (T, d̂egT ) be two extended combinatorial surfaces.
An extended morphism is a morphism µ : S → T that fulfils

degS(v) + d̂egS(v) = degT (µ(v)) + d̂egT (µ(v))

for all vertices v in S.

In the special situation of vertex–faithful triangular complexes, we can go even fur-
ther. In this case, we can generalise the polygonal shadow and twilight morphisms from
Definition 2.7.8. We also introduce a regularity concept to ensure that all “new” vertices
have zero extended defect.

Definition 4.2.11. An extended polygonal twilight morphism is an extended polyg-
onal morphism that is also a polygonal shadow morphism.

An extended polygonal twilight morphism

µ : (VS , ES , FS , ηS , ϕS , d̂egS)→ (VT , ET , FT , ηT , ϕT , d̂egT )

is called hexagonal if all vertices w ∈ VT with w 6= µV (v) for any v ∈ VS fulfil degT (w)+
d̂egT (w) = 6.
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Since we can interpret an extended surface as part of a larger surface, we should be
able to combine two surfaces.

Lemma 4.2.12. Let (S, d̂eg) with S = (V S , ES , FS , ηS , ϕS) be an extended simplicial
surface and T = (V T , ET , F T , ηT , ϕT ) a simplicial surface. Assume ρ : ∂S → ∂T is a
graph isomorphism with d̂eg(v) = degT (ρV (v)) for all boundary vertices v ∈ V S. Then,

S +ρ T = (V S ] V T / ∼V , ES ] ET / ∼E , FS ] F T , η, ϕ),

with

• ∼V is an equivalence relation on V S ] V T , with equivalence classes {v} for any
inner vertex v ∈ V S ] V T , and {v, ρV (v)} for any boundary vertex v ∈ ∂S.

• ∼E is an equivalence relation on ES ] ET , with equivalence classes {e} for any
inner edge e ∈ ES ] ET , and {e, ρE(e)} for any boundary edge e ∈ ∂S.

• The maps η and ϕ are defined as

η : ES ] ET / ∼E → Pot2(V S ] V T / ∼V )

x 7→


{[v] | v ∈ ηS(e)} x = {e} for an inner edge e ∈ ES

{[v] | v ∈ ηT (e)} x = {e} for an inner edge e ∈ ET

{[v] | v ∈ ηS(e)} x = {e, ρE(e)} for a boundary edge e ∈ ES ,

ϕ : FS ] F T → Pot3(ES ] ET / ∼E)

f 7→
{
{[e] | e ∈ ϕS(f)} f ∈ FS

{[e] | e ∈ ϕT (f)} f ∈ F T .

is a closed simplicial surface. Furthermore, (S, d̂eg)→ S +ρ T is an extended polygonal
twilight morphism.

Proof. First, we have to show that S +ρ T is a closed simplicial surface. We start by
showing the conditions of Definition 2.5.2.

1. Let f ∈ FS ] F T . Since S and T are triangular complexes, there is a se-
quence (v1, e1, v2, e2, v3, e3) of incident vertices vi and incident edges ei. Then,
([v1]∼V , [e1]∼E , [v2]∼V , [e2]∼E , [v3]∼V , [e3]∼E ) is the sequence for f in S +ρ T .

2. Let [v] be a vertex in V S ]V T / ∼V , then there is an element w ∈ [v] with w ∈ V S

or w ∈ V T . In either case, there is an edge e ∈ ES (or e ∈ ET ) with v ≺ e. By
definition of η, we have [v] ∈ η([e]).
A similar argument shows that every edge of S +ρ T is incident to a face.

Next, we show that all edges of S +ρ T are inner edges. This is clear for all edges
[e] ∈ ES ]ET / ∼E with |[e]| = 1. Consider an edge {eS , eT } with eS ∈ ES and eT ∈ ET .
By definition, eS is a boundary edge. Since eT = ρE(eS), the edge eT is a boundary
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edge as well. Thus, they are both incident to exactly one face. Since {eS , eT } is incident
to all faces that are incident to at least one of their elements, this edge is incident to
exactly two faces.

Finally, we have to show that there are no ramified vertices. Again, this is easy for
all inner vertices of S and T , since all incident edges are inner edges. Consider a vertex
{vS , vT } with vS ∈ V S and vT ∈ V T . Then, both are boundary vertices, so there are
maximal non–closed umbrellas

(eS0 , fS1 , eS1 , fS2 , . . . , fSn , eSn) (eT0 , fT1 , eT1 , fT2 , . . . , fTm, eTm).

Since ρ : ∂S → ∂T is a graph isomorphism, we have {ρE(eS0 ), ρE(eSn)} = {eT0 , eTm}.
Without loss of generality, say ρE(eS0 ) = eT0 and ρE(eSn) = eTm. Then,

([eS0 ], fS1 , [eS1 ], . . . , fSn , [eSn ], fTm, [eTm−1], . . . , [eT1 ], fT1 )

is a maximal closed umbrella around {vS , vT }.
To complete the proof, we have to show that (S, d̂eg) → S +ρ T is an extended

polygonal twilight morphism. But this follows from d̂eg(v) = degT (ρV (v)).

4.3 Regular Dress–surfaces

In this section, we analyse the particular case of regular Dress–surfaces, i. e. closed
Dress–surfaces with constant degree. We want to characterise them group–theoretically.

The theoretical background (coset actions) is covered in Subsection 4.3.1. In Subsec-
tion 4.3.2, we construct a correspondence between regular Dress–surfaces and certain
subgroups of triangle groups. Finally, in Subsection 4.3.3, we will extend this correspon-
dence to a connection between the subgroup inclusion and Dress covering morphisms.

Since the degree of the vertices is relevant, we choose a name that emphasises it.

Definition 4.3.1. Let S = (C, σ0, σ1, σ2) be a triangular, closed Dress–surface such that
〈σ0, σ1, σ2〉 acts transitively on C. If all vertices have the same degree d, then S is called
a degree–d Dress–surface.

For degree–d Dress–surfaces, the orbits of 〈σ1, σ2〉 all have the same size.

Corollary 4.3.2. Let (C, σ0, σ1, σ2) be a degree–d Dress–surface. Then, 〈σ0, σ1〉 only
has orbits of size 6 on C, 〈σ0, σ2〉 only has orbits of size 4, and 〈σ1, σ2〉 only has orbits
of size 2d.

Proof. We have 〈σ0, σ1, σ2〉 ≤ Sym(C) and all of them are involutions. We consider the
different subgroups in turn.

• Consider the subgroup 〈σ0, σ1〉. By Definition 4.3.1, the Dress–surface is triangular.
Definition 2.8.9 then tells us that all faces contain 6 elements. Since faces are just
the orbits of 〈σ0, σ1〉 on C (Definition 2.6.3), the claim follows.
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• Consider the subgroup 〈σ0, σ2〉. By Definition 4.3.1, the Dress–surface is closed,
so all edges are inner edges (Definition 2.8.6). By Definition 2.6.7, this means that
all edges contain 4 elements. Since edges are the orbits of 〈σ0, σ2〉 on C (Definition
2.6.3), the claim follows.

• Consider the subgroup 〈σ1, σ2〉, whose orbits are the vertices by Definition 2.6.3.
By Definition 4.3.1, all vertex degrees are d, so all vertices contain 2d elements (by
Definition 4.1.1).

4.3.1 Coset actions
In this subsection, we recall some basic facts about coset actions. In general, we will act
from the left. The material here is covered in more detail in the group theory literature,
including [7], [54], and [2].

We start by setting down the notation of group actions. There are two primary ways
to describe group actions and we make use of both of them.

Definition 4.3.3. Let G be a group and M be a set. A (left) action of G on M is a
map G×M →M, (g,m) 7→ g.m satisfying

1. 1.m = m for all m ∈M and

2. g.(h.m) = (gh).m for all m ∈M and g, h ∈ G.

The action homomorphism of this action is the group homomorphism

G→ Sym(M) g 7→ (m 7→ g.m).

For any group homomorphism γ : G→ Sym(M), the action via γ denotes the action

G×M →M (g,m)→ γ(g)(m).

The basic equality concept for actions is equivariance.

Definition 4.3.4. Let G be a group acting on the sets M and N . The actions are called
equivariant if there is a bijection ϕ : M → N with ϕ(g.m) = g.ϕ(m) for all g ∈ G and
m ∈M .

It is well–known that every transitive group action is equivariant to a coset action
(e. g. [7, (5.8)], [54, Theorem 6.3], and [2, Proposition 9.9]):

Theorem 4.3.5. Let G be a group acting transitively on the set M . For any m ∈ M ,
the action of G on M is equivariant to the action of G on the cosets G/U , with U :=
StabG(m), by the bijection

G/U →M gU 7→ g.m

Two coset actions G/U and G/V are equivariant if and only if U and V are conjugate.
If m is replaced by h.m, the subgroup U is replaced by hUh−1.
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The subgroup U in Theorem 4.3.5 depends on a choice of m ∈ M . For convenience,
we state the equivariance connecting different choices explicitly.

Remark 4.3.6. Let G be a group and U ≤ G a subgroup. For h ∈ G define V := hUh−1.
Then, the following map is an equivariance of the coset actions:

ϕ : G/U → G/V tU 7→ th−1V

Proof. ϕ is clearly bijective. For any g ∈ G we have

ϕ(g.tU) = ϕ(gtU) = gth−1V = g.ϕ(tU)

Next, we describe the equivariances from G/U to itself.

Lemma 4.3.7. Let G be a group and U ≤ G a subgroup. NG(U) acts on G/U via
(n, gU) 7→ gn−1U . The action homomorphism of this action induces an isomorphism
between NG(U) and the group of equivariances G/U → G/U .

Proof. Let ϕ : G/U → G/U be an equivariance. Then, there is an n ∈ G such that
ϕ(U) = nU . From there, we conclude

ϕ(gU) = gϕ(U) = gnU.

It remains to check for which n this map is well–defined.
Let u ∈ U , then ϕ(gU) = ϕ(guU) for all g ∈ G. Equivalently, gnU = gunU , so

n−1un ∈ U . Since this holds for all u ∈ U , we conclude n ∈ NG(U).
Consider the second claim. Let n,m ∈ NG(U), then

m.(n.gU) = m.(gn−1U) = gn−1m−1U = g(mn)−1U = mn.gU,

so (n, gU) 7→ gn−1U defines an action.

As a small application of the normaliser action, we prove an invariant for its action
on coset tuples.

Lemma 4.3.8. Let G be a group and U ≤ G a subgroup. The left action of NG(U) on
G/U ×G/U (from Lemma 4.3.7) has the orbit–distinguishing invariant

(aU, bU) 7→ (aNG(U), aUb−1).

Proof. Since U ≤ NG(U), the first component is invariant. For the second component:

n.(aU, bU) = (an−1U, bn−1U) 7→ (an−1)U(bn−1)−1 = an−1Unb−1 = aUb−1,

since n ∈ NG(U). This shows the invariance.
Finally we have to show that this invariant distinguishes between the orbits of the

normaliser–action. Assume that we have two pairs of cosets (aU, bU) and (cU, dU) with
the same invariant. In particular, we know that aNG(U) = cNG(U). Therefore, there
exists an n ∈ NG(U) such that an = c. Applying n to (aU, bU) gives (cU, bnU). The
second component of the invariant gives cU(bn)−1 = cUd−1, or Un−1b−1 = Ud−1. This
shows that the invariant is orbit–distinguishing.
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We can apply Lemma 4.3.7 to describe the automorphism group of a connected Dress–
surface (C, σ0, σ1, σ2): In Definition 5.2.15, we see that the connectivity of the Dress–
surface is equivalent to the transitivity of G := 〈σ0, σ1, σ2〉 on C. Thus, Theorem 4.3.5
gives an equivariance between C and G/U with U := StabG(c) for any c ∈ C.

Since automorphisms of a Dress–surface are bijections that are compatible with the
group action (compare Definition 2.6.8), they correspond to equivariances from G/U to
itself. By Lemma 4.3.7, they correspond to elements of NG(U).

The kernel of the corresponding action homomorphism NG(U) → Sym(G/U) is U .
Thus, the automorphism group of the Dress–surface is isomorphic to NG(U)/U .

This result actually holds in much greater generality, see [42, page 238].

4.3.2 Group–theoretic characterisation

In this subsection, we construct the correspondence between connected degree–d Dress–
surfaces and certain subgroups of triangle groups.

Triangle groups are well–known in the literature, compare e. g. [34, Section 6.2.8] for
a detailed introduction. For our purposes, we only need the triangle groups classically
referred to as T (2, 3, d), so we define them as follows:

Definition 4.3.9. For d ∈ N, the triangle group is the finitely presented group

Td := 〈a, b, c | a2, b2, c2, (ab)3, (ac)2, (bc)d〉. (4.4)

It is interesting to note that triangle groups appear naturally as automorphism groups
of certain regular surfaces. From [51, Chapter II], we obtain these correspondences (and
refer to it for further detail on this tangent):

d ∈ {3, 4, 5} Sphere (Tetrahedron, Octahedron, Icosahedron)
d = 6 Euclidean plane
d ≥ 7 Hyperbolic plane

There is a strong connection between triangle groups and degree–d Dress–surfaces,
since a triangle groups acts on the set of flags. This action was used in [23] to classify
certain regular surfaces (in the formalism of combinatorial maps).

Remark 4.3.10. Let (C, σ0, σ1, σ2) be a connected degree–d Dress–surface. Then, Td
acts transitively on C (from the left) via the action homomorphism defined by

Td → Sym(C) a 7→ σ0 b 7→ σ1 c 7→ σ2.

Proof. By Definition 4.3.3, it is sufficient to show that the given homomorphism is well–
defined. Let G = 〈α, β, γ〉 be the free group with three generators and consider the
group homomorphism defined by

ϕ : G→ Sym(C) α 7→ σ0 β 7→ σ1 γ 7→ σ2.
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By Definition 2.6.1, σ0, σ1, and σ2 are involutions. Thus, α2, β2, γ2 ∈ ker(ϕ). Definition
2.6.1 also implies (σ0σ2)2 = idC , so (αγ)2 ∈ ker(ϕ).

By Corollary 4.3.2, the orbits of 〈σ0, σ1〉 have size 6. Since neither σ0 nor σ1 have
fixed points (Definition 2.6.1), the orbit of the chamber c ∈ C is

{c, σ1(c), σ0σ1(c), σ1σ0σ1(c), (σ0σ1)2(c), σ1(σ0σ1)2(c)}.

In particular, (σ0σ1)3(c) = c for all chambers c ∈ C. Since (σ0σ1)3 ∈ Sym(C), this
implies (σ0σ1)3 = idC . Thus, (αβ)3 ∈ ker(ϕ).

Finally, σ2 cannot have fixed points (otherwise 〈σ0, σ2〉 would have an orbit of size
2), so we can apply the same argument as above to obtain (σ1σ2)d = idC . This implies
(βγ)d ∈ ker(ϕ).

By the homomorphism theorem, the group homomorphism described in Remark 4.3.10
is well–defined.

Theorem 4.3.5 allows us to rewrite the action from Remark 4.3.10 as a coset action.

Corollary 4.3.11. Let (C, σ0, σ1, σ2) be a degree–d Dress–surface, c ∈ C, and U :=
StabTd(c). Then, Td/U → C, gU 7→ g.c is an equivariance between the action from
Remark 4.3.10 and the left action of Td on the cosets Td/U .

Every class of isomorphic degree–d Dress–surfaces defines a conjugacy class of sub-
groups. We want to classify all subgroups that correspond to a degree–d Dress–surface.

Definition 4.3.12. A subgroup U ≤ Td is called surface subgroup if the coset action
of Td on Td/U is equivariant to the action of Td on the chambers of a degree–d Dress–
surface.

Lemma 4.3.13. The subgroup U ≤ Td is a surface subgroup if and only if the groups
〈a, b〉, 〈a, c〉, and 〈b, c〉 act regularly on their coset orbits in Td/U .

In this case (Td/U, a, b, c) is a degree–d–surface.

Proof. The subgroups 〈a, b〉, 〈a, c〉, and 〈b, c〉 are dihedral groups of orders 6, 4, and 2d,
respectively. For example 〈a, b〉 ∼= 〈x, y | x2, y2, (xy)3〉 ∼= D6.

Suppose first that U ≤ Td is a surface subgroup, i. e. there is a degree–d Dress–surface
(C, σ0, σ1, σ2) such that the actions of Td on C and Td/U are equivariant. Since 〈a, b〉
acts on Td/U as 〈σ0, σ1〉 acts on C (by Remark 4.3.10), and 〈σ0, σ1〉 acts regularly on
each of its orbits, 〈a, b〉 also acts regularly. Similar arguments apply to 〈a, c〉 and 〈b, c〉.

Conversely, (Td/U, a, b, c) is a degree–d–surface (compare Definition 2.6.1):

• Since 〈a, b, c〉 = Td, it acts transitively on Td/U .

• By the definition of Td, the elements a, b, and c are involutions.
If a fixed a coset gU , the orbits of gU under 〈a, b〉 would have size at most 2. Then,
〈a, b〉 could not be acting regularly on this orbit. Therefore, a cannot fix a coset.
The same argument applies to b and c as well.
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• By the definition of Td, we have (ab)3 = 1. If there was a coset gU such that
(ab)k.gU = gU for some 0 < k < 3, the group 〈a, b〉 would not be acting regularly
on the orbit 〈a, b〉.gU . Therefore, ab has only 3–cycles.
The same argument applies to ac and bc.

We can characterise surface subgroups without reference to coset actions.

Lemma 4.3.14. A subgroup U ≤ Td is a surface subgroup if and only if gUg−1∩X = {1}
for all g ∈ Td and all X ∈ {〈a, b〉, 〈a, c〉, 〈b, c〉}.

Proof. We apply the characterisation from Lemma 4.3.13.
The group 〈a, b〉 acts non–regularly if any 1 6= x ∈ 〈a, b〉 fixes a coset gU , i. e. x.gU =

gU . This is equivalent to g−1xg ∈ U , or x ∈ gUg−1. Therefore, the action is non–regular
if and only if gUg−1 ∩ 〈a, b〉 6= {1}. The arguments for 〈a, c〉 and 〈b, c〉 are similar.

4.3.3 Coverings
In Corollary 4.3.11, we obtained a correspondence between degree–d Dress–surfaces and
surface subgroups. In this subsection, we show a deeper underlying correspondence: It is
possible to describe coverings with it. We focus on the correspondence between subgroup
inclusion and Dress covering morphisms.

We do not present the full discrete covering theory in this thesis, but it can be found
(for simplicial complexes) in the excellent reference [58].

Lemma 4.3.15. Let U ≤ V ≤ Td be two surface subgroups. Then, there is a Dress
covering morphism Td/U → Td/V, tU 7→ tV .

Proof. Call the map ϕ and the Dress–surfaces (Td/U, a, b, c) and (Td/V, a, b, c). First,
we have to show that ϕ is a Dress morphism according to Definition 2.6.8. Since

ϕ(x.tU) = xtV = x.ϕ(tU)

holds for all x ∈ {a, b, c}, the map is compatible with the involutions.
The restriction ϕ : 〈a, b〉.tU → 〈a, b〉.tV is bijective since the action of the subgroup
〈a, b〉 is regular by Lemma 4.3.13.

Since Lemma 4.3.13 also applies to the subgroups 〈a, c〉 and 〈b, c〉, the Dress morphism
ϕ is even a Dress covering morphism (compare Definition 2.6.10).

Remark 4.3.16. Let (C, σ0, σ1, σ2) and (D, τ0, τ1, τ2) be two degree–d Dress–surfaces
and ϕ : C → D a Dress covering morphism. For each c ∈ C, we have

StabTd(c) ≤ StabTd(ϕ(c)).

Proof. If x ∈ StabTd(c), the chambers c and x.c are mapped to the same chamber ϕ(c)
in D. In particular, x ∈ StabTd(ϕ(c)).

This gives a correspondence between surface subgroups of Td and degree–d–surfaces.
It sends inclusions to coverings and maps conjugated subgroups to isomorphic surfaces.

82



5 Topological concepts

In this chapter, we discuss several aspects of combinatorial surfaces that are related to
topology. In Section 5.1, we construct the topological realisation of a twisted polygonal
complex. In Section 5.2, we explore different concepts of connectivity for combinatorial
surfaces, and in Section 5.3, we explore orientability–concepts.

5.1 Topological realisation of twisted polygonal complexes
In this section, we construct the topological realisation of a twisted polygonal complex.
Since we need some topological definitions, these are covered in Subsection 5.1.1. The
actual construction is presented in Subsection 5.1.2.

5.1.1 Basic topological definitions

In this subsection, we collect several elementary topological statements that are necessary
to construct the topological realisation of a twisted polygonal complex in Subsection
5.1.2. All of them can be found in most introductory texts about elementary topology,
including [43], [29], [6], and [32]. We mostly follow the presentation of [43].

The most basic definition in topology is that of a topological space. Intuitively, this
definition formalises the concept of “closeness”, but without having a distance.

Definition 5.1.1. A topological space is a pair (X,O) consisting of a set X and a set
O ⊆ Pot(X) (the elements of O are called open sets) such that the following axioms
hold:

• Any union of open sets is an open set.

• The intersection of two open sets is an open set.

• ∅ and X are open sets.

Topological spaces are connected by morphisms. These morphisms are maps that
preserve the topological structure. Such maps are called continuous.

Definition 5.1.2. Let (X,OX) and (Y,OY ) be two topological spaces. A map ψ : X → Y
is continuous if ψ−1(B) ∈ OX for all B ∈ OY .

If ψ is a continuous bijection and ψ−1 is continuous, ψ is called a homeomorphism.

Up to this point, we have not constructed any topological space. Since we want to
construct one, we need some examples.
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Example 5.1.3. (Rn,O) is a topological space, where A ∈ O if for every x ∈ A, there
is an ε > 0 such that y ∈ Rn

∣∣∣∣∣∣
√√√√ n∑
k=1

(xk − yk)2 < ε

 ⊆ A.
Since our goal is to construct the topological realisation of a twisted polygonal complex

in Subsection 5.1.2, we are especially interested in constructing new topological spaces
from already known spaces (like Rn from Example 5.1.3). One of these constructions is
combining two topological spaces disjointly.

Remark 5.1.4. Let (X,OX) and (Y,OY ) be two topological spaces. Then the disjoint
union (X ] Y, {A ]B | A ∈ OX , B ∈ OY }) is a topological space.

Obviously, the disjoint union of copies of Rn is not really useful yet, so we need to
be able to construct some more interesting spaces. Fortunately, Rn is large enough to
contain many interesting subsets. Each of them can be interpreted as a topological space
as well.

Definition 5.1.5. Let (X,O) be a topological space and S ⊆ X. Then (S, {A ∩ S | A ∈
O}) is a topological space, called subspace topology or induced topology.

With Definition 5.1.5 and Example 5.1.3, we can construct topological polygons. To
do so, we employ the well–known identification C ∼= R2 that does not change the open
sets of R2. This allows us to describe the boundary points of a regular polygon in a
concise way.

Definition 5.1.6. Let n ≥ 3. The standard n–gon is the topological space induced by
the convex hull of {e

2πi
n
k | 1 ≤ k ≤ n} ⊆ C ∼= R2.

Since a twisted polygonal complex consists of several polygons, we have to combine
them. This is done by a “gluing” process, that is formalised by the concept of quotient
topology. To describe this topology, we have to fix some notation about equivalence
relations, which we copy from [43, Chapter III].

Notation 5.1.7. If X is a set and ∼ an equivalence relation on X, then:

• X/ ∼ denotes the set of equivalence classes.

• [x] ∈ X/ ∼ denotes the equivalence class of x ∈ X.

• π : X → X/ ∼, x 7→ [x] denotes the canonical projection.

Now, we can describe the quotient topology. It is the natural choice for a topology if
we start from a topological space with equivalence relation and transfer the topology to
the space of equivalence classes.
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Definition 5.1.8. Let (X,O) a topological space and ∼ an equivalence relation on X.
The topological space (X/ ∼,O/ ∼) is called quotient topology, where

A ∈ O/ ∼ ⇔ π−1(A) ∈ O.

Since we do not just identify single points, but the edges of polygons, we use the
concepts of paths to formulate the identifications more concisely.

Definition 5.1.9. Let (X,O) be a topological space. A path is a continuous map [0, 1]→
X. The path space of X is the set of all paths and denoted by X [0,1].

To improve our understanding of connectivity in Section 5.2, we define connectivity
for topological spaces.

Definition 5.1.10. A topological space (X,O) is path–connected if, for every two
points x1, x2 ∈ X, there is a path p : [0, 1]→ X with p(0) = x1 and p(1) = x2.

We also introduce Jordan–curves for later use.

Definition 5.1.11. A Jordan–curve is a path p : [0, 1]→ R2 such that p(0) = p(1) and
p(a) 6= p(b) for all 0 ≤ a < b < 1.

At this point, we have introduces enough topological concepts to start the construction
of the topological realisation for twisted polygonal complexes in Subsection 5.1.2.

5.1.2 Construction
In this subsection, we construct the topological realisation of a twisted polygonal com-
plex. We start with a discussion about the options available in the literature to realise
simplicial complexes topologically. There exist several options, which are described in
more detail in [47, Section 2.2].

• [62] defines a functor from the category Simp to the category of topological spaces
(with continuous functions) via a combinatorial definition of the barycentric coor-
dinate system. In [31, Chapter II], this construction is taken as the definition of a
simplicial complex.
The same construction is described in [47] as convex combinations.

• For finite simplicial complexes, [47] defines a topological realisation by giving all
vertices explicit coordinates in a sufficiently high–dimensional vector space.

• For (not necessarily finite) simplicial complexes, [47] describes a “gluing” approach
to construct a topological realisation.

Not all of these approaches can be generalised to twisted polygonal complexes. Both
the combinatorial construction and giving explicit coordinates assume that a simplex is
defined uniquely by its vertices. This is an assumption that is not fulfilled for twisted
polygonal complexes in general. Kozlov hints at this problem when he talks about
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polyhedral complexes and generalized simplicial complexes, which he defines by a gluing
process – since that is the only remaining approach.

We now give an explicit construction of the topological realisation of a twisted polyg-
onal complex. We proceed as follows:

1. Define a (topological) polygon for each face.

2. Glue these polygons together along their boundaries, according to the incidence
information from vertices and edges.

We start by defining the polygons for each face of the twisted polygonal complex
(V,E, F,C, λ, σ0, σ1,∼). The basis for these are the topological polygons from Definition
5.1.6.

However, we have to go one step further: We want to keep the connection between the
combinatorial properties of a face and the topological polygon. To do so, we map each
chamber c of the given face to a path (compare Definition 5.1.9) that starts at the point
corresponding to the vertex λ0(c) and goes straight along the boundary corresponding
to the edge λ1(c), until it reaches the midpoint.

Definition 5.1.12. Let (V,E, F,C, λ, σ0, σ1,∼) be a twisted polygonal complex. Let
(c1, c2, . . . , c2n) be a strong polygon path of the face f ∈ F . A twisted topological
polygon of f is a topological space Pf , together with a map πf : {c1, . . . , c2n} → P

[0,1]
f ,

such that

1. There is a homeomorphism ϕ from the standard n–gon to Pf .

2. The map πf fulfils the following property:

πf (cm) = ϕ ◦

t 7→ (1− t)e
2πi
n
k + t e

2πi
n k+e

2πi
n (k+1)

2 m = 2k + 1

t 7→ (1− t)e
2πi
n
k + t e

2πi
n k+e

2πi
n (k−1)

2 m = 2k

Well–defined. We have to show that the twisted topological polygon of f is independent
from the chosen strong polygon path. Let (c1, . . . , c2n) and (d1, . . . , d2n) be two such
paths. Then, by Remark 2.4.16, we can obtain one from the other by cyclic permutation
and reflection.

Thus, it is sufficient to show that the definition of twisted topological polygons is
invariant under these operations. The cyclic permutation maps the strong polygon
path (c1, . . . , c2n) to the strong polygon path (c3, c4, . . . , c2n, c1, c2). Let (P1, π1) be the
twisted topological polygon defined from the first strong polygon path, and (P2, π2) the
one defined from the second one.

We have two homeomorphism ϕ1 : Q→ P1 and ϕ2 : Q→ P2, where Q is the standard
n–gon. Then, we define the homeomorphism

τ : P1 → P2 x 7→ ϕ2(ϕ−1
1 (x) · e−

2π
n ).
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This gives

π2(cm) = ϕ2 ◦

t 7→ (1− t)e
2πi
n

(k−1) + t e
2πi
n (k−1)+e

2πi
n k

2 m = 2k + 1

t 7→ (1− t)e
2πi
n

(k−1) + t e
2πi
n (k−1)+e

2πi
n (k−2)

2 m = 2k

= ϕ2 ◦ (y 7→ e−
2π
n y) ◦

t 7→ (1− t)e
2πi
n
k + t e

2πi
n k+e

2πi
n (k+1)

2 m = 2k + 1

t 7→ (1− t)e
2πi
n
k + t e

2πi
n k+e

2πi
n (k−1)

2 m = 2k

= ϕ2 ◦ (y 7→ e−
2π
n y) ◦ ϕ−1

1 ◦ π1(cm)
= τ ◦ π1(cm)

The reflection maps (c1, . . . , c2n) to (c2n, c2n−1, . . . , c2, c1). With the same notation as
before, the homeomorphism τ is defined by

τ : P1 → P2 x 7→ ϕ2(ϕ−1
1 (x)),

where y is the complex conjugate of y ∈ C. Then, with e2πi = 1, we get

π2(cm) = ϕ2 ◦

t 7→ (1− t)e
2πi
n

(n−k) + t e
2πi
n (n−k)+e

2πi
n (n−k−1)

2 m = 2k + 1

t 7→ (1− t)e
2πi
n

(n−k) + t e
2πi
n (n−k)+e

2πi
n (n−k+1)

2 m = 2k

= τ ◦ ϕ1 ◦

t 7→ (1− t)e
2πi
n

(k−n) + t e
2πi
n (k−n)+e

2πi
n (k+1−n)

2 m = 2k + 1

t 7→ (1− t)e
2πi
n

(k−n) + t e
2πi
n (k−n)+e

2πi
n (k−1−n)

2 m = 2k

= τ ◦ ϕ1 ◦

t 7→ (1− t)e
2πi
n
k + t e

2πi
n k+e

2πi
n (k+1)

2 m = 2k + 1

t 7→ (1− t)e
2πi
n
k + t e

2πi
n k+e

2πi
n (k−1)

2 m = 2k
= ϕ ◦ π1(cm).

It is possible to transfer the notions of interior and boundary points from an n–gon
to a twisted topological polygon.

Definition 5.1.13. Let (Pf , πf ) be a twisted topological polygon with homeomorphism
ϕf : Q→ Pf , where Q is a standard n—gon. We call x ∈ Pf a boundary point if

ϕ−1
f (x) = te

2πi
n
k + (1− t)e

2πi
n

(k+1)

for some integer 1 ≤ k ≤ n and t ∈ [0, 1]. Otherwise, x is an interior point.

Well–defined. By Definition 5.1.12, the map πf maps a chamber to a path that consists
only of boundary points. Furthermore, every boundary point lies on one of these paths.
Thus, this definition is independent from the choice of strong polygon path.

In order to construct the topological realisation, we first combine all of the twisted
topological polygons into a large space, and then we construct an appropriate quotient
topology.
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Definition 5.1.14. Let P = (V,E, F,C, λ, σ0, σ1,∼) be a twisted polygonal complex. For
any face f ∈ F , let (Pf , πf ) be a twisted topological polygon of f . The twisted polygon
flock of P is the pair (U, π), where U :=

⋃
f∈F Pf and π : C → U [0,1] maps c ∈ C to

the path πλ2(c)(c).

At this point, the polygons of all faces are disjoint. We have to define an appropriate
equivalence relation on them to “glue” them together. Since equivalent chambers should
correspond to neighbouring polygons, we identify the path of these chambers.

But since there might be vertices with more than one maximal umbrella, we need
to define an equivalence relation on them as well. Combining these ideas gives the full
definition of the topological realisation.

Definition 5.1.15. Let P = (V,E, F,C, λ, σ0, σ1,∼) be a twisted polygonal complex.
with twisted polygonal flock (U, π). The topological realisation of P is the quotient
topology U/ ∼U , where ∼U is an equivalence relation on U defined by:

• If c1 ∼ c2, we set π(c1)(t) ∼U π(c2)(t) for all t ∈ [0, 1].

• If λ0(c1) = λ0(c2), we set π(c1)(0) ∼U π(c2)(0).

We mention without proof that the topological realisation can be described as a CW–
complex.

Definition 5.1.15 is sensible, i. e. combinatorial properties are reflected in the topology.

Lemma 5.1.16. Let (V,E, F,C, λ, σ0, σ1,∼) be a twisted polygonal complex with twisted
polygon flock (U, π) and topological realisation U/ ∼U .

• Let p ∈ U be an interior point of one of the twisted topological polygons. Then,
|[p]∼U | = 1.

• Let c ∈ C be a chamber with λ0(c) = v. Then, |[π(c)(0)]∼U | = deg(v).

• Let c ∈ C be a chamber with λ1(c) = e. Then, |[π(c)(t)]∼U | = |[c]∼| for all
0 < t ≤ 1.

Proof. The first claim is obvious since ∼U is only non–trivial on the boundaries of the
twisted topological polygons.

The third claim follows since the paths π(c) for c ∈ C are injective and ∼U identifies
as many points as |[c]∼|.

For the second claim: For all c ∈ C with λ0(c) = v, the points π(c)(0) are identified.
Since π(c)(0) = π(σ1(c))(0), these come in pairs of two. Thus, we identify deg(v) many
points.

At this point, we defined the topological realisation of a twisted polygonal complex.
Actually, this defines a functor: We can associate a continuous map to each twisted
polygonal morphism.
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Lemma 5.1.17. Let (µV , µE , µF , µC) : P 1 → P 2 be a twisted polygonal morphism.
Then, there is a continuous map between the topological realisations.

Proof. We employ the notation P k = (V k, Ek, F k, Ck, λk, σk0 , σ
k
1 ,∼k) for k ∈ {1, 2}.

For any face f ∈ F 1, we have µF (f) ∈ F 2. Since a twisted polygonal morphism re-
spects adjacencies, µC maps strong polygon paths of f to strong polygon paths of µF (f).
Let (c1, c2, . . . , c2n) be a strong polygon path of f and (Pf , πf ) a twisted topological poly-
gon based on this path. Then, (µC(c1), µC(c2), . . . , µC(c2n) is a strong polygon path of
µF (f), and (Pf , πµF (f)) with

πµF (f) : {µC(c1), µC(c2), . . . , µC(c2n)} → P
[0,1]
f µC(ck) 7→ πf (ck)

is a twisted topological polygon of µF (f). Thus, we have a homeomorphism from (Pf , πf )
to (Pf , πµF (f)). Combining them yields a continuous map µ : U1 → U2, where (Uk, πk)
is the twisted polygon flock of P k for k ∈ {1, 2}.

We have to show that µ induces a continuous map U1/ ∼U1→ U2/ ∼U2 . Call the
projection maps πUk : Uk → Uk/ ∼Uk , then the induced map is πU2 ◦ µ ◦ (πU1)−1

(note that πU1 is not invertible in general, so we have to show that this definition is
independent from the choice of the preimage). First, we have to show that the induced
map is well–defined.

Let x, y ∈ U1 with πU1(x) = πU1(y). There are two possibilities:

1. x = π1(c1)(t) and y = π1(c2)(t) with 0 < t ≤ 1. This is only possible for c1 ∼1

c2. In this case, we have µC(c1) ∼2 µC(c2), which guarantees π2(µC(c1))(t) ∼U2

π2(µC(c2))(t).

2. x = π1(c1)(0) and y = π1(c2)(0) for c1, c2 ∈ C1 with λ0(c1) = λ0(c2). This is
transferred by µ as well, so π2(µC(c1))(0) ∼U2 π2(µC(c2))(0).

Now, we have to show that it is continuous. Let A ⊆ U2/ ∼U2 be an open set. By
Definition 5.1.8, the set of preimages (πU2)−1(A) is open in U2. Since µ is continuous,
µ−1((πU2)−1(A)) is open in U1. By Definition 5.1.8, this is equivalent to

(πU1 ◦ µ−1 ◦ (πU2)−1)(A)

being open in U1/ ∼U1 . Thus, the induced map is continuous.

5.2 Connectivity and strong connectivity
In this section, we explore different notions of connectivity for combinatorial complexes.
There are two different types of connectivity that we are concerned with.

• The first one, connectivity, is mostly topological. A combinatorial complex is
connected if its topological realisation is path–connected. For polygonal complexes,
it is equivalent to the connectivity of the vertex–edge–graph (Definition 3.2.1).
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• The second one, strong connectivity, uses topological and combinatorial structure.
In many cases, it is more natural to use. In the topological realisation, it corre-
sponds to path–connectivity after removal of all vertices. For polygonal complexes,
it is equivalent to the connectivity of the face–edge–graph (Definition 3.3.1).
In the literature, it appeared e. g. in [49, Section 3] and [44, Section 2].
We stress that strong connectivity is not related to the equally named concept for
directed graphs (which can be found in [35, Section 1.1, D45]).

5.2.1 For twisted polygonal complexes
In this subsection, we define connectivity and strong connectivity for twisted polygonal
complexes. We start with the formalisation of strong connectivity. It relies on the
concept of strong paths (compare Definition 2.4.12 from Subsection 2.4.1).

Definition 5.2.1. A twisted polygonal complex (V,E, F,C, λ, σ0, σ1,∼) is strongly con-
nected if for any two faces f1, f2 ∈ F there is a strong path (c1, . . . , cn) ∈ Cn with
λ2(c1) = f1 and λ2(c2) = f2.

To define the weaker notion of connectivity, we need to define a different type of path.

Definition 5.2.2. Let (V,E, F,C, λ, σ0, σ1,∼) be a twisted polygonal complex with cham-
bers c1 6= c2 ∈ C. For k ∈ {0, 1, 2}, the chambers c1 and c2 are weakly k–adjacent if
λk(c1) = λk(c2).
c1 and c2 are weakly adjacent if they are weakly k–adjacent for at least one k ∈
{0, 1, 2}.

If two chambers are strongly adjacent, they are also weakly adjacent.

Remark 5.2.3. Let (V,E, F,C, λ, σ0, σ1,∼) be a twisted polygonal complex and c1 6=
c2 ∈ C. If c1 and c2 are k–adjacent for k ∈ Z := {0, 1, 2}, they are weakly m–adjacent
for all m ∈ Z\{k}.

Proof. We check the different cases of adjacency (Definition 2.4.11):

• If c1 and c2 are 0–adjacent, we have c2 = σ0(c1). By Definition 2.4.1, σ0 does not
change the value of λ1 and λ2.

• If c1 and c2 are 1–adjacent, we have c2 = σ1(c1). By Definition 2.4.1, σ0 does not
change the value of λ0 and λ2.

• c1 and c2 are 2–adjacent, we have c1 ∼ c2. By Definition 2.4.1, the values of λ0
and λ1 are identical for c1 and c2.

In Subsection 2.5.2, strong paths are constructed from adjacent chambers. Here, we
construct weak paths from weakly adjacent chambers.

Definition 5.2.4. Let (V,E, F,C, λ, σ0, σ1,∼) be a twisted polygonal complex.
A weak path is a sequence (c1, c2, . . . , cn) ∈ Cn such that ci and ci+1 are weakly

adjacent for all 1 ≤ i < n.
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Definition 5.2.5. A twisted polygonal complex (V,E, F,C, λ, σ0, σ1,∼) is connected if
for any two faces f1, f2 ∈ F there is a weak path (c1, . . . , cn) ∈ Cn with λ2(c1) = f1 and
λ2(c2) = f2.

It is easy to see that strong connectivity is a stronger notion than connectivity.

Remark 5.2.6. A strongly connected twisted polygonal complex is connected.

Proof. By Remark 5.2.3, every strong path is also a weak path.

The converse direction is not always true, but it becomes true if we restrict attention
to twisted polygonal surfaces.

Lemma 5.2.7. A connected twisted polygonal surface is strongly connected.

Proof. Let f1 and f2 be two faces and consider a weak path (c1, . . . , cn). If we can
construct a strong path between the chambers ck and ck+1 for all 1 ≤ k < n, we can
combine them into a strong path from c1 to c2.

• If λ0(ck) = λ0(ck+1), both ck and ck+1 lie in the same strong umbrella path. This
is the only case where we need the assumption that we have a surface.

• If λ1(ck) = λ1(ck+1), Definition 2.4.1 implies ck ∼ ck+1 or ck ∼ σ0(ck+1). In the
first case, (ck, ck+1) is a strong path. In the second case, (ck, σ0(ck+1), ck+1) is a
strong path.

• If λ2(ck) = λ2(ck+1), Definition 2.4.1 implies ck+1 ∈ 〈σ0, σ1〉.ck. In other words,
ck+1 = τ1τ2 · · · τm.ck with τi ∈ {σ0, σ1}. Then,

(ck, τm.ck, τm−1τm.ck, . . . , τ2 · · · τm.ck, ck+1)

is a strong path.

Now, we show the correspondence between (strong) connectivity of a twisted polygonal
complex and the path–connectivity of its topological realisation.

Lemma 5.2.8. A twisted polygonal complex is connected if and only if its topological
realisation is path–connected.

A twisted polygonal complex is strongly connected if and only if its topological realisa-
tion (without vertices) is path–connected.

Proof. Let P = (V,E, F,C, λ, σ0, σ1,∼) be the twisted polygonal complex with twisted
polygon flock U =

⊎
f∈F Pf and topological realisation U/ ∼U .

Assume P is connected. Let x1, x2 ∈ U/ ∼U . Since each twisted topological polygon
is path–connected, we only have to consider the case that x1 and x2 lie in different
polygons, say Pf and Pg. By Definition 5.2.5, there is a weak path (c1, . . . , cn) ∈ Cn
with λ2(c1) = f and λ2(cn) = g.

Consider the pair ck and ck+1 for 1 ≤ k < n.
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• If λ0(ck) = λ0(ck+1), the twisted topological polygons Pλ2(ck) and Pλ2(ck+1) share
a point in U/ ∼U . Thus, there is a path between them.

• If λ1(ck) = λ1(ck+1), there is a chamber c ∈ C with λ2(c) = λ2(ck+1) and c ∼ ck
(by Definition 2.4.1). Thus, the twisted topological polygons of the two chambers
share a point in U/ ∼U .

Thus, we can always find a path between any two points x1, x2 ∈ X.
Conversely, assume U/ ∼U is path–connected. Consider two faces f, g ∈ F . Pick any

point x1 ∈ Pf and x2 ∈ Pg, then there is a path p : [0, 1] → U/ ∼U with p(0) = x1 and
p(0) = x2. This path has to traverse some twisted topological polygons. If it moves from
Pf1 to Pf2 , there are two options to do so (with respect to ∼U from Definition 5.1.15):

• It can be an identification because of chambers c1 ∼ c2 with λ2(ck) = fk. In this
case, we construct a path to c1 (the chambers within a face can be connected by
a strong path) and continue with c2, which is strongly adjacent.

• It can be an identification because of chambers c1, c2 ∈ C, satisfying λ2(ck) = fk
and λ0(c1) = λ0(c2). In this case, construct a path to c1 and continue with c2,
which is weakly adjacent.

This shows the equivalence between connectivity of P and path–connectivity of U/ ∼U .
Furthermore, a close analysis of this proof reveals the stronger claim: P is strongly
connected if and only if U/ ∼U is path–connected after removal of all vertices.

5.2.2 For polygonal complexes

In this subsection, we define connectivity and strong connectivity for polygonal com-
plexes. We start with the formalisation of strong connectivity. It relies on the concept
of strong paths (compare Definition 2.5.17 from Subsection 2.5.2.

Definition 5.2.9. A polygonal complex (V,E, F, η, ϕ) is strongly connected if for any
two faces f, g ∈ F there is an edge–face–path (e0, f1, e1 . . . , fn, en) with f1 = f and
fn = g.

The weaker notion of connectivity is defined with a different type of path.

Definition 5.2.10. Let (V,E, F, η, ϕ) be a polygonal complex. A vertex–edge–path is
a sequence (v0, e1, v1, e2, . . . , en, vn) such that

• vi ∈ V for all 0 ≤ i ≤ n.

• ei ∈ E for all 1 ≤ i ≤ n.

• vi−1 and vi are incident to ei for all 1 ≤ i ≤ n.

In the same form as the definition of strong connectivity, we define connectivity.
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Definition 5.2.11. A polygonal complex (V,E, F, η, ϕ) is connected if for any two
vertices v, w ∈ V there is a vertex–edge–path (v0, e1, v1, . . . , en, vn) with v0 = v and
vn = w.

Strong connectivity is a stronger notion than connectivity.

Lemma 5.2.12. A strongly connected polygonal complex is connected.

Proof. Let v, w be two vertices. By Definition 2.5.2, there are faces f, g such that v ≺ f
and w ≺ g. Since the polygonal complex is strongly connected, there is an edge–face–
path (e0, f1, e1, . . . , fn, en) with f = f1 and g = fn.

Without loss of generality, we choose the edges e0 and en of the path in such a way
that v ≺ e0 and w ≺ en. Choose vertices vi ≺ ei for all 1 ≤ i < n. This gives the vertex
sequence

(v, v1, v2, . . . , vn−1, w)
Every two vertices that are adjacent in this sequence are incident to the same face. Since
two vertices incident to the same face are always connected by a vertex–edge–path (the
perimeter of the face), the claim follows.

The converse direction is not always true, but becomes true if we restrict our attention
to polygonal surfaces.

Lemma 5.2.13. A connected polygonal surface is strongly connected.

Proof. Let f, g be two faces. Choose vertices v, w with v ≺ f and w ≺ g. Since the
polygonal complex is connected, there is a vertex–edge–path (v0, e1, v1, . . . , en, vn) with
v0 = v and vn = w.

Since v0 is either an inner vertex or a boundary vertex, there is an umbrella–path from
f to a face f1 satisfying e1 ≺ f1. Since ≺ is transitive, v1 ≺ f1. Thus, we can repeat
this argument to construct an edge–face–path from f to g.

We note that both concepts of connectivity can be found in the associated graphs of
a polygonal complex (compare Definition 3.2.1 and Definition 3.3.1).

Remark 5.2.14. A polygonal complex is

• connected if and only if its vertex–edge–graph is connected.

• strongly connected if and only if its face–edge–graph is connected.

5.2.3 For Dress–surfaces
In the previous subsection, we have seen that connectivity and strong connectivity do
not differ for twisted polygonal surfaces (Remark 5.2.6 and Lemma 5.2.7) and polygonal
surfaces (Lemma 5.2.12 and Lemma 5.2.13).

Since there is no separate concept of “combinatorial complex” for Dress–surfaces, we
only define strong connectivity.

Definition 5.2.15. Let (C, σ0, σ1, σ2) be a Dress–surface. It is called (strongly) con-
nected if the group 〈σ0, σ1, σ2〉 acts transitively on C.

93



5.2.4 Compatibilities
The previous subsections define connectivity and strong connectivity for twisted polyg-
onal complexes, polygonal complexes, and Dress–surfaces. In this subsection, we show
that both concepts are combinatorial properties, i. e. they are preserved by the functors
between the categories (compare Subsection 2.8.1).

We start with the functor TwistPoly : PolyComp → TwistPolyComp. It is useful
to recall certain chambers which are always connected by a strong path.

Remark 5.2.16. Let (V,E, F,C, λ, σ0, σ1,∼) be a twisted polygonal complex and c1, c2 ∈
C. If λ1(c1) = λ1(c2) or λ2(c1) = λ2(c2) holds, there exists a strong path with first
element c1 and last element c2.

We construct a correspondence between the weak path (c1, c2, . . . ) in a twisted polyg-
onal complex and the vertex–edge–path (v0, e1, v1, . . . ) like in the following illustration:

c1

c2 c3

c4 c5

c6e1 e2 e3

v0

v1

v2

v3

Lemma 5.2.17. Let P be a polygonal complex. Then, P is (strongly) connected if and
only if TwistPoly(P ) is (strongly) connected.

Proof. We use the notation from Definition 2.5.13 for P and TwistPoly(P ).

• Let P be connected. Let f, g ∈ F and choose vertices v, w ∈ V with v ≺ f and
w ≺ g. Since P is connected, there is a vertex–edge–path (v0, e1, v1, . . . , en, vn)
with v0 = v and vn = w.
Choose faces fi with ek ≺ fk (for 1 ≤ k ≤ n) satisfying f1 = f and fn = g. Then,
define

c2k−1 := (vk−1, ek, fk) ∈ C
c2k := (vk, ek, fk) ∈ C.

Then, (c1, c2, . . . , c2n−1, c2n) is a weak path with λ2(c1) = f0 = f and λ2(c2n) =
fn = g.

• Let TwistPoly(P ) be connected. Let v, w ∈ V and choose faces f, g ∈ F with v ≺ f
and w ≺ g. Since TwistPoly(P ) is connected, there is a weak path (c1, . . . , cn) with
λ2(c1) = f and λ2(cn) = g. If λ0(c1) 6= v, we extend the path by the chamber
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(v, e, f), with the edge e chosen appropriately. We do the same for cn. After these
extensions, we have a weak path with λ0(c1) = v and λ0(cn) = w.
If we can show that weak adjacency of ck and ck+1 implies the existence of a
vertex–edge–path from λ0(ck) to λ0(ck+1), the claim is proven.
If λ0(ck) = λ0(ck+1), there is nothing to prove. If λ1(ck) = λ1(ck+1), the sequence
(λ0(ck), λ1(ck), λ0(ck+1)) describes a vertex–edge–path. If λ2(ck) = λ2(ck+1), the
vertices λ0(ck) and λ0(ck+1) lie in the same polygon of P , so they are connected
by a vertex–edge–path.

• Let P be strongly connected.
For f, g ∈ F , there is an edge–face–path (e0, f1, e1, . . . , fn, en) with f = f1 and
g = fn. Let c−k be any chamber with λ12(c−k ) = (ek−1, fk) and c+

k any chamber
with λ12(c+

k ) = (ek, fk).
Since λ2(c−k ) = λ2(c+

k ), there is a strong path from c−k to c+
k (Remark 5.2.16).

Since λ1(c+
k ) = λ1(c−k+1), there is a strong path from c+

k to c−k+1 (Remark 5.2.16).
Combining them yields a strong path from c−1 to c+

n that satisfies λ2(c−1 ) = f and
λ2(c+

n ) = g.

• Let TwistPoly(P ) be strongly connected. For f, g ∈ F , there is a strong path
(c1, . . . , cn) with λ2(c1) = f and λ2(cn) = g.
We partition the set {1, 2, . . . , n} into maximal disjoint intervals I1, I2, . . . , Im,
with the stipulation that λ2(ci) = λ2(cj) if i, j ∈ Ik. We define fk as λ2(ci) for any
i ∈ Ik.
Consider the chambers cmax Ik and cmin Ik+1 . Since they differ on λ2, they have to
be 2–adjacent. In particular, we can define ek as their image under λ1.
We obtain an edge–face–path

(λ1(cmin I1), f1, e1, . . . , fk, λ1(cmax Ik))

with f1 = f and fk = g.

Next, we consider the functor TwistDress : DressSurf → TwistPolyComp. The
involutions σ0 and σ1 appear in both of them, while σ2 only appears in the formalisation
of Dress–surfaces. However, it is very tightly connected with the equivalence relation ∼
from the formalisation of twisted polygonal complexes. This can be seen in Definition
2.7.10.

Remark 5.2.18. Let S = (C, σ0, σ1, σ2) be a Dress–surface. Then, σ2(c) ∼ c for all
chambers c ∈ C in the twisted polygonal surface TwistDress(S).

The central observation in the correspondence between Dress–surfaces and twisted
polygonal surfaces is, that the action of an involution in {σ0, σ1, σ2} corresponds to
shifting to an adjacent chamber.
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Lemma 5.2.19. Let S be a Dress–surface. Then, S is strongly connected if and only if
TwistDress(S) is strongly connected.

Proof. A Dress–surface (C, σ0, σ1, σ2) is strongly connected if and only if 〈σ0, σ1, σ2〉 acts
transitively on C. Equivalently, for any two chambers c1, c2 ∈ C, we can write c2 = w.c1
for some w ∈ 〈σ0, σ1, σ2〉. Since all σk are involutions (implying σ−1

k = σk), the element
w can be written as τm · · · τ2τ1 with τi ∈ {σ0, σ1, σ2} for 1 ≤ i ≤ m.

Taking Remark 5.2.18 into consideration, we can write this product as the strong path

(c1, τ1.c1, τ2τ1.c1, . . . , τm−1 · · · τ1.c1, c2)

in TwistDress(S). Clearly, if there is a strong path between any two chambers, the
twisted polygonal surface TwistDress(S) is strongly connected.

Conversely, let TwistDress(S) be strongly connected. Given two chambers c, d ∈ C,
we obtain a strong path (c1, . . . , cn) with λ2(c) = λ2(c1) and λ2(d) = λ2(cn). Since two
chambers in the same face are always connected by a strong path (Remark 5.2.3), we
can extend this path to a strong path from c to d.

Without loss of generality, ck 6= ck+1 for 1 ≤ k < n. Then, we can represent this path
as an element in the group 〈σ0, σ1, σ2〉: Consider the adjacent chambers ck and ck+1.

• If they are 0–adjacent, we have σ0(ck) = ck+1 by Definition 2.4.11.

• If they are 1–adjacent, we have σ1(ck) = ck+1 by Definition 2.4.11.

• If they are 2–adjacent, we have ck ∼ ck+1 by Definition 2.4.11. By combining
ck 6= ck+1 with ck ∼ ck+1, we obtain σ2(ck) = ck+1.

This shows that 〈σ0, σ1, σ2〉 acts transitively on C.

5.3 Orientability and dual orientability
In this section, we explore different concepts of orientation. Specifically, we analyse these
two:

• Orientability, which is a discrete analogue of topological orientability.

• Dual orientability, which has no topological analogue, as it heavily relies on the
combinatorial structure.

In both cases, we assign each face a “local orientation”. If we imagine the face as
embedded polygon in R3, this corresponds to a choice of one of the sides of the polygon.
We can illustrate this by a cyclic arrow:

	 �
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A combinatorial surface is orientable if we can choose local orientations in such a way
that the local orientations of two adjacent faces are compatible. In an embedding into
R3, this corresponds to choosing “the same side” for two adjacent polygons. In the
illustration with cyclic arrows, it corresponds to the following situation:

	 	

We define dual orientation by the opposite compatibility relation:

	 �

5.3.1 For polygonal surfaces

In this subsection, we define orientation and dual orientation for polygonal surfaces.
To do so, we need to transform intuitive description from the start of Section 5.3 into
rigorous mathematical statements.

For polygonal surface, we formalise the cycle arrow notation that we have used in the
illustrations. We associate each face to a cyclic permutation of its vertices.

Definition 5.3.1. Let (V,E, F, η, ϕ) be a polygonal complex. A local orientation map
is a map c : F → Sym(V ) with the following property:

• Let f ∈ F , then there is an alternating sequence (v1, e1, v2, e2, . . . , vm, em) of ver-
tices and edges incident to f (Definition 2.5.2). Then c(f) is either the cycle
(v1, v2, . . . , vm) or the cycle (vm, . . . , v2, v1).

This concept allows us to define orientation and dual orientation.

Definition 5.3.2. A polygonal surface (V,E, F, η, ϕ) is orientable if there is a local
orientation map c : F → Sym(V ) such that

• For each inner edge with incident vertices v1 and v2 and incident faces f1 and f2,
we have

c(f1)(v1) = v2 ⇔ c(f2)(v2) = v1,

Intuitively, the cyclic permutations of the faces induce “opposite orientations” on
the edges between them if they can be combined into a consistent global orientation.
However, if all of them induce the same “edge orientation”, this allows us to define a
dual orientation.
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Definition 5.3.3. A polygonal surface (V,E, F, η, ϕ) is dual orientable if there is a
local orientation map c : F → Sym(V ) such that

• For each inner edge with incident vertices v1 and v2 and incident faces f1 and f2,
we have

c(f1)(v1) = v2 ⇔ c(f2)(v1) = v2,

5.3.2 For twisted polygonal surfaces
In this subsection, we define orientation and dual orientation for twisted polygonal
surfaces. To do so, we need to transform the intuitive description from the start of
Section 5.3 into rigorous mathematical statements.

We cannot use the approach for polygonal surfaces from Subsection 5.3.1 since vertices
can be incident to a face “multiple times”. We could define a cyclic permutation on the
chambers that are incident to each face, but we choose a different formalisation that is
based on the observation in this illustration:

	 �

This means that we can encode the information “up or down” as a two–colouring of the
chambers within a face. This is our primary formalisation for twisted polygonal surfaces.

Definition 5.3.4. Let (V,E, F,C, λ, σ0, σ1,∼) be a twisted polygonal complex. A local
chamber colouring is a map s : C → {±1} such that two chambers have different
values if they are 0– or 1–adjacent.

To define orientation, we have to formalise the compatibility between two adjacent
faces. Visually, this gives the following illustration:

	 	

Thus, the value of s has to be different for chambers that are 2–adjacent.

Definition 5.3.5. A twisted polygonal surface (V,E, F,C, λ, σ0, σ1,∼) is orientable if
there is a local chamber colouring s : C → {±1} such that 2–adjacent chambers have
distinct values.

For dual orientability, we reach the opposite conclusion:

	 �
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Definition 5.3.6. A twisted polygonal surface (V,E, F,C, λ, σ0, σ1,∼) is orientable if
there is a local chamber colouring s : C → {±1} such that 2–adjacent chambers have
equal values.

5.3.3 For Dress–surfaces
In this subsection, we define orientation and dual orientation for Dress–surfaces. To do
so, we need to transform intuitive description from the start of Section 5.3 into rigorous
mathematical statements.

We could choose the same formalisation as in Subsection 5.3.2 for twisted polygonal
surfaces. However, we would waste the potential of formulating orientability group–
theoretically. We start with the same visualisation of local orientation as Subsection
5.3.2.

Consider a Dress–surfaces (C, σ0, σ1, σ2) and two chambers c1 and c2 in the same strongly
connected component. By Definition 5.2.15, there is an element g ∈ 〈σ0, σ1, σ2〉 such that
c2 = g.c1.

Instead of assigning {±1} to c1 and c2, we could assign the change of this assignment
to g. Formally, this corresponds to the construction of a group homomorphism µ :
〈σ0, σ1, σ2〉 → {±1} (we interpret the “shift” multiplicatively).

For both orientability and dual orientability, we would need µ(σ0) = µ(σ1) = −1. To
encode orientability, σ2 has to be mapped to −1 as well. To encode dual orientability,
σ2 has to be mapped to +1.

Although this idea sounds nice (we just need to check whether such a group homomor-
phism exists), it is not sufficient to formalise (dual) orientability. In particular, consider
the stabiliser Stab〈σ0,σ1,σ2〉(c) of an arbitrary chamber c. Clearly, any element from this
stabiliser should be mapped to +1. In other words,

Stab〈σ0,σ1,σ2〉(c) ≤ ker(µ)

for all chambers c ∈ C.

Definition 5.3.7. The Dress–surface (C, σ0, σ1, σ2) is orientable if the map

µ : 〈σ0, σ1, σ2〉 → 〈−1〉 σ0 7→ −1 σ1 7→ −1 σ2 7→ −1

extends to a well–defined group homomorphism that satisfies Stab〈σ0,σ1,σ2〉(c) ≤ ker(µ)
for all chambers c ∈ C.

Definition 5.3.8. The Dress–surface (C, σ0, σ1, σ2) is dual orientable if the map

µ : 〈σ0, σ1, σ2〉 → 〈−1〉 σ0 7→ −1 σ1 7→ −1 σ2 7→ +1

extends to a well–defined group homomorphism that satisfies Stab〈σ0,σ1,σ2〉(c) ≤ ker(µ)
for all chambers c ∈ C.
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5.3.4 Compatibilities
In the previous subsections, we defined the concepts of orientability and dual orientability
for polygonal surfaces, twisted polygonal surfaces, and Dress–surfaces. In this subsection,
we show that both of these are combinatorial properties (in the sense of Subsection 2.8.1).

We start with the functor TwistPoly. The proof idea was informally presented in the
motivation of Subsection 5.3.2.
Lemma 5.3.9. The polygonal surface S is (dual) orientable if and only if TwistPoly(S)
is (dual) orientable.
Proof. Assume S = (V,E, F, η, ϕ) is (dual) orientable with local orientation map c : F →
Sym(V ). We define the local chamber colouring s : C → {±1} as follows: Let f ∈ F be
a face. By Definition 5.3.1, there is an alternating sequence (v1, e1, v2, e2, . . . , vm, em) of
vertices and edges incident to f such that c(f) = (v1, . . . , vm). Define

s(vk, ek, f) := 1 s(vk, ek−1, f) := −1.
Clearly, two chambers that are 0–adjacent or 1–adjacent take different values under

s, so this is a well–defined local chamber colouring. Consider two 2–adjacent chambers
c1 = (v, e, f) and c2 = (v, e, g). Let the alternating vertex–edge–sequence of f be
(v, e, w, . . . ) for some vertex w.

Now, there are two options for the alternating vertex–edge–sequence of g. It can have
the form (v, e, w, . . . ) or (. . . , w, e, v). In the first case, we have c(g)(v) = w, in the
second one we obtain c(g)(w) = v. Consequently:
• If S is orientable, Definition 5.3.2 tells us that we are in the second case. Then,

the 2–adjacent flags (v, e, f) and (v, e, g) have different values under s.

• If S is dual orientable, Definition 5.3.3 tells us that the first case applies. Then,
the 2–adjacent flags (v, e, f) and (v, e, g) have the same value under s.

Conversely, assume TwistPoly(S) is (dual) orientable with local chamber map s : C →
{±1}. We define the local orientation map c : F → Sym(V ) as follows: For any face
f ∈ F , consider the chambers

Cf := {c ∈ C | λ2(c) = f and s(c) = 1}.
Since 1–adjacent chambers have different s–values, the map

κ : {v ∈ V | v ≺ f} → Cf v 7→ c with Cf ∩ λ−1
0 (v) = {c}

is well–defined.

c1 c2

c3

c4c5

c6

v1 v2

v3

f

In the example on the left, we have

s(ck) =
{

+1 k odd
−1 k even.

Then, Cf = {c1, c3, c5} and

κ(v1) = c1, κ(v2) = c3, κ(v3) = c5.
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We define c(f) ∈ Sym(V ) as follows:

• If v 6≺ f , it stays fixed.

• If v ≺ f , we map v to λ0(c), where c is the unique chamber that is 0–adjacent to
κ(v).

This makes c(f) into a cycle. Consider an inner edge e ∈ E with incident vertices
v, w ∈ V and incident faces f, g ∈ F . Denote the four chambers in λ−1

1 (e) as follows:

λ(c1) = (v, e, f), λ(c2) = (w, e, f), λ(c3) = (w, e, g), λ(c4) = (v, e, g).

c1

c2 c3

c4

ef g

w

v

Without loss of generality, assume c(f)(v) = w, so s(c1) = 1 and s(c2) = −1.

• If TwistPoly(S) is orientable, we have s(c3) = 1 and s(c4) = −1, implying c(g)(w) =
v. Thus, S is orientable.

• If TwistPoly(S) is dual orientable, we have s(c3) = −1 and s(c4) = 1, implying
c(g)(v) = w. Thus, S is dual orientable.

Next, we consider the functor TwistDress. The correspondence proof follows along the
lines in which we motivated the definitions for Dress–surfaces in Subsection 5.3.3.

Lemma 5.3.10. The Dress–surface S is (dual) orientable if and only if TwistDress(S)
is (dual) orientable.

Proof. We employ the notation from Definition 2.7.10 for S and TwistDress(S).
Assume S is (dual) orientable with group homomorphism µ. We have to define an

appropriate local chamber colouring s : C → {±1} of TwistDress(S). For each strongly
connected component of TwistDress(S), we choose a chamber c and define s(c) := 1.
Each other chamber c∗ in the same connected component can be written as c∗ = g.c
with g ∈ 〈σ0, σ1, σ2〉, and we define s(c∗) := µ(g). This map is well–defined, since any
g ∈ Stab〈σ0,σ1,σ2〉(c∗) satisfies µ(g) = 1. It is easy to see that s satisfies Definition 5.3.5
if S is orientable, and Definition 5.3.6 if S is dual orientable.

Conversely, assume TwistDress(S) is (dual) orientable with local chamber colouring
s : C → {±1}. We need to show that

µ : 〈σ0, σ1, σ2〉 → 〈−1〉 σ0 7→ −1 σ1 7→ −1 σ2 7→ a
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extends to a well–defined group homomorphism with Stab〈σ0,σ1,σ2〉(c) ≤ ker(µ) for all
chambers c ∈ C (where a = −1 in the orientable case, and a = +1 in the dual orientable
case).

Let τmτm−1 · · · τ1 = idC , with τk ∈ {σ0, σ1, σ2} for all 1 ≤ k ≤ m, then this corresponds
to the strong path

(c, τ1.c, τ2τ1.c, . . . , τm−1 · · · τ1.c, c)

in TwistDress(S) for any chamber c ∈ C. If we manage to show that any strong path that
starts and ends at the same chamber corresponds to an element g ∈ 〈σ0, σ1, σ2〉 with
µ(g) = 1, the map µ extends to a group homomorphism and the stabiliser condition
holds as well.

In any case, this strong path has to have an even number of sign changes (since
TwistDress(S) is (dual) orientable). Thus, µ(g) = 1 and the (dual) orientability of S
follows.
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6 Extensions of vertex–faithful simplicial
surfaces

In this chapter, we focus exclusively on vertex–faithful simplicial surfaces, which can
also be described as simplicial complexes (for details, we refer to Subsection 2.7.1).

We are mainly interested in surfaces with boundary. In Section 6.1, we discuss under
which circumstances it is possible to remove a boundary vertex such that the resulting
object remains a simplicial surface.

In Section 6.2, we discuss three possible ways to extend a surface along its boundary.
We perform this both for simplicial surfaces and for extended simplicial surfaces.

6.1 Removing a boundary vertex
In this section, we discuss in which situations a boundary vertex can be removed “safely”.

To remove a boundary vertex from a simplicial surface, we have to know how it affects
the incidence structure (before we can check whether it fulfils the conditions of Definition
2.5.2 and Definition 2.5.27).

Definition 6.1.1. Let S = (V,E, F, η, ϕ) be a simplicial surface with vertex v ∈ V .
Then, S−v is the quintuple (V −v, E−v, F−v, η−v, ϕ−v) with

• V −v := V \{v}.

• E−v := E\{e ∈ E | v ∈ η(e)}.

• F−v := F\{f ∈ F | v ∈ (η]ϕ)(f)}.

• η−v := η|E−v .

• ϕ−v := ϕ|F−v .

This modified incidence structure can be defined very generally, but S−v does not
have to be a simplicial surface, as Example 6.1.2 and Example 6.1.3 show.

Example 6.1.2. Consider the simplicial surface S = (V,E, F, η, ϕ) with

V = {v1, . . . , v5}, E = {e1, . . . , e7}, F = {f1, f2, f3},

and

η : E → Pot2(V ) ei 7→
{
{vi, vi+1} 2 - i
{vi−1, vi+1} 2 | i

ϕ : F → Pot3(E) fi 7→ {e2i−1, e2i, e2i+1},
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that can be illustrated like this:

e1

e2

e4

e3 e7e5

e6

f1

f2

f3

v1

v2

v3

v4

v5

Then, S−v4 has the components

V −v4 = {v1, v2, v3, v5}, E−v4 = {e1, e2, e3, e6}, F−v4 = {f1},

with the illustration:

e1

e2

e3

e6

f1

v1

v2

v3 v5

The illustration suggests that the edge e6 is not incident to any face. Since ϕ(f1) =
{e1, e2, e3} and f1 is the only element of F−v4, this is indeed the case. Therefore, S−v4

is not a polygonal complex.

Example 6.1.3. Consider the simplicial surface S = (V,E, F, η, ϕ) with

V = {v1, . . . , v6}, E = {e1, . . . , e9}, F = {f1, . . . , f4},

and

η : E → Pot2(V ) ei 7→
{
{v1, vi+1} i ≤ 5
{vi−4, vi−3} i > 5

ϕ : F → Pot3(E) fi 7→ {ei, ei+1, ei+5},

that can be illustrated like this:

e1

e6 e2

e7

e3 e8

e4

e5 e9

f1

f2

f3

f4
v1

v2

v3 v4

v5

v6
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Then, S−v4 has the components

V −v4 = {v1, v2, v3, v5, v6}, E−v4 = {e1, e2, e4, e5, e6, e9}, F−v4 = {f1, f4},

with the illustration:

e1

e2e6

e4

e5 e9

f1

f4
v1

v2

v3

v5

v6

The illustration suggests that the vertex v1 is ramified. Indeed, (e1, f1, e2) and (e4, f4, e5)
are umbrella–paths around v1. Since ϕ(f1) = {e1, e2, e6} and ϕ(f4) = {e4, e5, e9}, both
of these are maximal. Therefore, S−v4 cannot be a polygonal surface.

To avoid these corner cases, we need to consider the vertices and edges “around” the
boundary vertex. Formally, we talk about the link of a vertex. For simplicial complexes,
this is a well–known concept, compare [47, Definition 2.13].

Definition 6.1.4. Let S = (V,E, F, η, ϕ) be a triangular complex and v ∈ V a vertex.
The link LkS(v) of v in S is the graph (Vv, Ev, η|Ev), with

Vv := {w ∈ V | ∃e ∈ E : η(e) = {v, w}}
Ev := {e ∈ E | ∃f ∈ f : e ∈ ϕ(f) ∧ v ∈ (η]ϕ)(f) ∧ v 6∈ η(e)}.

Well–defined. We have to show that (Vv, Ev, η|Ev) actually defines a graph according to
Definition 3.1.1.

Let e ∈ Ev and η(e) = {w1, w2}. By definition of Ev, there is an f ∈ F with e ∈ ϕ(f)
and v ∈ (η]ϕ)(f). Combining these (and |f | = 3), we obtain (η]ϕ)(f) = {v, w1, w2}.
By Corollary 2.5.5, there are edges e1, e2 ∈ E with η(ek) = {v, wk} for k ∈ {1, 2}.

We want to generalise the “problematic” vertices from Example 6.1.2 and Example
6.1.3. In both cases, we remove a boundary vertex that is connected to a different
boundary vertex by an inner edge. We call these vertices critical.

Definition 6.1.5. Let S = (V,E, F, η, ϕ) be a simplicial surface. A vertex v ∈ V is
called critical, if there is a vertex w ∈ Vv in the link with:

• w is a boundary vertex of S.

• There is an inner edge e ∈ E with η(e) = {v, w}.

Otherwise, v is called non–critical.
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Example 6.1.6. In the simplicial surface of Example 6.1.2, the critical vertices are
{v2, v3, v4}.

In the simplicial surface of Example 6.1.3, the critical vertices are {v1, v3, v4, v5}.

At this point, it is not yet clear whether our concept of critical vertices captures the
relevant situation. This is proven in the next lemma.

Lemma 6.1.7. Let S be a vertex–faithful connected simplicial surface with more than
one face. Let v be a non–critical vertex of S and LkS(v) = (Vv, Ev, ηv). Then, S−v is a
simplicial surface with degrees

degS−v(w) =


degS(w) w 6∈ Vv
degS(w)− 1 w ∈ Vv and w is a boundary vertex of S
degS(w)− 2 w ∈ Vv and w is an inner vertex of S.

Furthermore, the inclusion map S−v → S is a polygonal twilight morphism.

Proof. Denote S = (V,E, F, η, ϕ) and S−v = (V −v, E−v, F−v, η−v, ϕ−v). We start by
proving that S−v is a triangular complex, according to Definition 2.5.2.

1. Since η−v and ϕ−v are restrictions of η and ϕ, such that ϕ−v(f) ⊆ E−v for f ∈ F−v,
all faces remain polygons. In particular, they remain triangular.

2. Let w ∈ V −v ⊆ V . Since S is vertex–faithful, there can be at most one edge e ∈ E
with η(e) = {v, w}. Since there are at least two edges incident to each vertex,
there is an e ∈ E with w ∈ η(e) and v 6∈ η(e), so e ∈ E−v.

3. Let e ∈ E−v ⊆ E.
• If e is a boundary edge of S, there is exactly one face f ∈ F with e ∈ ϕ(f).

We have to show that v 6∈ (η]ϕ)(f).
Assume to the contrary that v ∈ (η]ϕ)(f). Let w ∈ η(e), so w ∈ Vv. Since e
is a boundary edge, w is a boundary vertex. By assumption, v is non–critical,
so the edge connecting v and w has to be a boundary edge. Since this is true
for all w ∈ η(e), all edges in ϕ(f) are boundary edges. Since S is connected,
this implies |F | = 1, in contradiction to our assumption on S.
• If e is an inner edge of S, let η(e) = {w1, w2}. Since S is vertex–faithful,

there can be at most one face f ∈ F with (η]ϕ)(f) = {v, w1, w2}. Since e is
an inner edge, there are two faces f ∈ F with e ∈ ϕ(f). Thus, one of them
lies in F−v.

Next, we show that S−v is a simplicial surface according to Definition 2.5.27.

• Since for every e ∈ E−v ⊆ E

|{f ∈ F−v | e ∈ ϕ(f)}| < |{f ∈ F | e ∈ ϕ(f)}|,

there are no ramified edges.
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• Let w ∈ V −v ⊆ V . If w 6∈ Vv, its maximal umbrellas are unchanged, so it remains
not ramified.
Consider w ∈ Vv. If w is an inner vertex of S, then v is incident to exactly two faces
in the umbrella. Removing them still leaves exactly one maximal umbrella. If w
is a boundary vertex of S, there is a boundary edge connecting v and w (since v is
non–critical). Therefore, v is incident to exactly one face of the maximal umbrella,
whose removal does not split the umbrella.

The second analysis also proves the statement concerning the degrees of S−v.
Finally, we have to show that the inclusion S−v → S is a polygonal twilight mor-

phism. Clearly, it is a polygonal morphism. To show that it is also a polygonal shadow
morphism, we prove the contraposition of Definition 2.7.8.

Let x ∈ Pot(V −v).

• If x = {v′} for some v′ ∈ V , then v′ ∈ V −v.

• If there is an edge e ∈ E with η(e) = x, we have e ∈ E−v since v 6∈ x.

• If there is a face f ∈ F with (η]ϕ)(f) = x, we have f ∈ F−v since v 6∈ x.

Thus, the inclusion is a polygonal shadow morphism, and therefore also a polygonal
twilight morphism.

Lemma 6.1.7 shows when we can remove a vertex from a simplicial surface. Since we
are also interested in extended simplicial surface (to apply them in Chapter 8), we would
like to extend this result to extended simplicial surfaces.

The main construction work has been done in Lemma 6.1.7 already. We only need
to define the external degrees appropriately. Consider the following illustration of a
simplicial surface, where the faces marked red should be removed.

w2
w3

w1 v

To determine the external degrees of the surface S−v, we count how many faces are
removed at each vertex. For w1 and w2, one face is removed. For w2, two faces are
removed. We codify these observations in a lemma.

Lemma 6.1.8. Let (S, d̂eg) be a vertex–faithful connected extended simplicial surface
with more than one face. Let v be a non–critical vertex of S with LkS(v) = (Vv, Ev, ηv).
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Then, (S−v, d̂eg
−v

) is an extended simplicial surface, with

d̂eg
−v

(w) =


d̂eg(w) + 1 w ∈ Vv and w is a boundary vertex of S
2 w ∈ Vv and w is an inner vertex of S
d̂eg(w) w 6∈ Vv.

Furthermore, (S−v, d̂eg
−v

)→ (S, d̂eg) is an extended twilight morphism.

Proof. From Lemma 6.1.7, we can deduce that S−v is a simplicial surface and S−v → S
is a twilight morphism.

We have to show that (S−v, d̂eg
−v

) defines an extended simplicial surface according
to Definition 4.2.1. For all vertices w 6∈ Vv, nothing changes. All vertices from Vv are
boundary vertices in S−v, and d̂eg

−v
is positive for them.

Finally, we have to show that ι : (S−v, d̂eg
−v

) → (S, d̂eg) is an extended twilight
morphism according to Definition 4.2.10. Let w be a vertex of S−v.

• If w 6∈ Vv, we have degS−v(w) = deg(w) and d̂eg
−v

(w) = d̂eg(w).

• If w ∈ Vv and w is a boundary vertex of S,

d̂eg
−v

(w) + degS−v(w) = d̂eg(w) + 1 + deg(w)− 1 = d̂eg(w) + deg(w).

• If w ∈ Vv and w is an inner vertex of S,

d̂eg
−v

(w) + degS−v(w) = 2 + deg(w)− 2 = d̂eg(w) + deg(w),

since d̂eg(w) = 0.

Thus, ι is an extended twilight morphism.

6.2 Boundary extensions

In Section 6.1, we removed a boundary vertex from a simplicial surface to create a new
surface. In this section, we are doing the converse operation: extending a simplicial
surface along its boundary.

We could describe a multitude of constructions here, but we restrict our attention to
those three that are crucial for the constructions in Chapter 8. The proofs for these
constructions can be transferred easily to other extensions not covered here.

Each subsection is dedicated to a specific extension. These are performed for simplicial
surfaces and for extended simplicial surfaces. In the latter case, we also show in which
cases the modified surface remains growth–controlled, assuming the starting surface is
already growth–controlled (see Definition 4.2.4 for the definition of growth–controlled).
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6.2.1 Extension by one face

In this subsection, we consider extensions of simplicial surfaces by one face. We want to
model the scenario illustrated here (where the blue triangle is added):

e∗

ev
2ev

1

v

w1 w2

fv

We also show that this is the unique extension by one face, such that the edge e∗
becomes an inner edge.

Lemma 6.2.1. Let S = (V,E, F, η, ϕ) be a simplicial surface and e∗ ∈ E a boundary
edge of S. There exists a unique simplicial surface T with boundary vertex v such that

1. S = T−v.

2. degT (v) = 1.

3. e∗ is an inner edge in T .

With η(e∗) = {w1, w2}, it is given by T = (V +, E+, F+, η+, ϕ+), with

V + = V ∪ {v}, E+ = E ∪ {ev1, ev2}, F+ = F ∪ {fv},

and

η+ : E+ → Pot2(V +) e 7→


η(e) e ∈ E
{w1, v} e = ev1
{w2, v} e = ev2.

ϕ+ : F+ → Pot3(E+) f 7→
{
ϕ(f) f ∈ F
{e∗, ev1, ev2} f = fv.

We also have

degT (w) =


degS(w) w 6= v and w 6∈ η(e∗)
degS(w) + 1 w ∈ η(e∗)
1 w = v.
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Proof. We start by showing the uniqueness. Let T = (V +, E+, F+, η+, ϕ+) be any such
extension. From T−v = S we deduce V +\{v} = V , so V + = V ∪ {v}, with v 6∈ V .

The condition degT (v) = 1 implies

|{f ∈ F+ | v ∈ (η+]ϕ+)(f)}| = 1 and
|{e ∈ E+ | v ∈ η+(e)}| = 2.

We denote the unique f ∈ F+ from the first set by fv. The two edges from the second
set are called ev1 and ev2.

Since e∗ is an inner edge in T , but a boundary edge in T−v, we know e∗ ∈ ϕ+(fv).
Since |ϕ+(fv)| = 3, we conclude ϕ+(fv) = {e∗, ev1, ev2}. With η(e∗) = {w1, w2} we have
(η+]ϕ+)(fv) = {v, w1, w2}. Without loss of generality, η+(evk) = {v, wk} for k ∈ {1, 2}.

Now we show that this construction actually defines a simplicial surfaces. Clearly,
fv is a polygon. Since all new vertices and edges are incident to an edge or a face,
respectively, T is a triangular complex.

Since e∗ is an inner edge, evk are boundary edges, and all other edges are unchanged,
there are no ramified edges in T .

Consider the vertices:

• v is a boundary vertex since (ev1, fv, ev2) is a maximal umbrella around it.

• All vertices in V \{w1, w2} are unchanged.

• The vertex wk (for k ∈ {1, 2}) has the maximal umbrella (e1, f1, . . . , en, fn, e
∗)

in S. In T , this umbrella can be extended to (e1, f1, . . . , en, fn, e
∗, fv, evk), so wk

remains a boundary vertex.

Thus, there are no ramified vertices, which shows that T is a simplicial surface.

The extension constructed in Lemma 6.2.1 deserves a name.

Definition 6.2.2. We refer to the unique simplicial surface from Lemma 6.2.1 by S+v
e∗ .

Next, we generalise the extension from Lemma 6.2.1 to extended simplicial surface,
analogous to Lemma 6.1.8. However, there is some ambiguity: Since the vertex v is
“new”, we have no information about its external degree. To determine it uniquely,
we need further restrictions. In our case, the construction in Chapter 8 requires the
extended polygonal twilight morphisms to be hexagonal (compare Definition 4.2.11).
This determines the external degree of v uniquely.

Lemma 6.2.3. Let (S, d̂eg) be an extended simplicial surface and e a boundary edge of
S, such that d̂eg(w) > 1 for all w ∈ η(e). Then, (S+v

e , d̂eg
+v
d ) (with d ∈ Z≥1) is an

extended simplicial surface with

d̂eg
+v
d (w) =


d̂eg(w) w 6= v and w not incident to e
d̂eg(w)− 1 w incident to e
d w = v.
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Furthermore, (S, d̂eg)→ (S+v
e , d̂eg

+v
d ) is an extended twilight morphism. It is hexagonal

if and only if d = 5.

Proof. By Lemma 6.2.1, S → S+v
e is a twilight extension. By assumption, (S+v

e , d̂eg
+v
d )

is an extended simplicial surface (no new inner vertices).
Since the definition of degS+v

e
from Lemma 6.2.1 and the definition of d̂eg

+v
d are inverse,

we obtain an extended twilight morphism.
The only vertex not in the image is v. Since degS+v

e
(v) = 1, the twilight morphism is

hexagonal if and only if d̂eg
+v
d (v) = 5.

In Lemma 6.2.3, we extended an extended simplicial surface by one face. Assuming
the surface we started with was growth–controlled (compare Definition 4.2.4), what can
we say about the modified surface? In general, it does not have to be growth–controlled.

Example 6.2.4. Consider an extended simplicial surface (S, d̂eg) such that ∂S is a
cyclic graph and the external degree–sequence has the form (4, 2, 2, 3, 4). Then, d̂eg is
growth–controlled.

We extend it with Lemma 6.2.3 along the edge between the values 3 and 4. This gives
the modified sequence (4, 2, 2, 2, 5, 3), which is not growth–controlled.

In Example 6.2.4, the issue is the subsequence (2, 2) on one side of the modified edge.
If we ban occurrences like this, we can guarantee growth–control.

Lemma 6.2.5. Let (S, d̂eg) be a growth–controlled, extended simplicial surface with a
boundary edge e such that d̂eg(w) > 2 for all w ∈ η(e). Additionally, assume that all
cyclic intervals I containing one w ∈ η(e) satisfy dd̂eg(I) ≤ 1.

Then, (S+v
e , d̂eg

+v
5 ) is growth–controlled.

Proof. We compare the cyclic N–sequences d̂eg and d̂eg
+v
5 in the cyclic graphs ∂S and

∂S+v
e .
Let η(e) = {w1, w2}. In order to apply Lemma 3.4.13, we split ∂S = (V1, E1, η1) into

the cyclic intervals induced by

I1 := {w1, w2} J1 := V1\I1.

We split ∂S+v
e = (V2, E2, η2) into

I2 := {w1, v, w2} J2 := V2\I2.

By construction of S+v
e , we have J1 = J2 and d̂eg(w) = d̂eg

+v
5 (w) for all w ∈ J1. Thus,

Lemma 3.4.13 is applicable.
To prove that d̂eg

+v
5 is growth–controlled, we need to check the properties from Defi-

nition 3.4.11.
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• We have

d
d̂eg

+v
5

(I2) = (3− d̂eg
+v
5 (w1)) + (3− d̂eg

+v
5 (v)) + (3− d̂eg

+v
5 (w2))

= (3− d̂eg(w1) + 1) + (3− 5) + (3− d̂eg(w2) + 1)
= (3− d̂eg(w1)) + (3− d̂eg(w2))
= dd̂eg(I1),

so d
d̂eg

+v
5

(V2) ≤ 0 by Lemma 3.4.13.

• Let X be a cyclic interval in ∂S+v
e such that X ∩ I2 is a cyclic subinterval of I2.

We distinguish several cases:
– If X ∩ I2 = {w1, v, w2}, we have

d
d̂eg

+v
5

(X) = d
d̂eg

+v
5

(I2) + d
d̂eg

+v
5

(X ∩ J2)

= dd̂eg(I1) + dd̂eg(X ∩ J1) ≤ 2,

since (S, d̂eg) is growth–controlled.
– If X ∩ I2 = {v, wk}, we choose the corresponding interval {wk} ⊆ I1. This

gives

d
d̂eg

+v
5

(X) = d
d̂eg

+v
5

({v, wk}) + d
d̂eg

+v
5

(X ∩ J2)

= (3− 5) + (3− d̂eg
+v
5 (wk)) + dd̂eg(X ∩ J1)

= −1 + (3− d̂eg(wk)) + dd̂eg(X ∩ J1) ≤ −1 + 2 = 0.

– If X ∩ I2 = {wk}, we choose the corresponding interval {wk} ⊆ I1. If we
remember that the defect–sum of the corresponding cyclic interval is bounded
by 1, we obtain

d
d̂eg

+v
5

(X) = d
d̂eg

+v
5

({wk}) + d
d̂eg

+v
5

(X ∩ J2)

= (3− d̂eg
+v
5 (wk)) + dd̂eg(X ∩ J1)

= 1 + (3− d̂eg(wk)) + dd̂eg(X ∩ J1) ≤ 1 + 1 = 2.

Thus, the defect–sum of all cyclic interval X, where X ∩ I2 is a subinterval of I2,
is bounded by 2.

• The final case (by Lemma 3.4.6) is a cyclic interval in ∂S+v
e that intersects I2 in

{w1, w2}. This interval is generated by V2\{v}. But then,

d
d̂eg

+v
5

(V2\{v}) = d
d̂eg

+v
5

(V2)− d
d̂eg

+v
5

({v}) ≤ 0− (3− 5) = 2 ≤ 2.
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Since all cyclic intervals are defect–controlled, d̂eg
+v
5 is growth–controlled. To show that

(S+v
e , d̂eg

+v
5 ) is growth–controlled, we need one more condition according to Definition

4.2.4, namely d̂eg
+v
5 (w) > 1 for all w ∈ V2. Consider d̂eg

+v
5 from Lemma 6.2.3.

• d̂eg
+v
5 (v) = 5 > 1.

• For w ∈ η(e), we have d̂eg(w) > 2 by assumption. Thus, d̂eg
+v
5 (w) > 1.

• For all other vertices w ∈ V1, we have d̂eg
+v
5 (w) = d̂eg(w) > 1, since (S, d̂eg) is

growth–controlled.

6.2.2 Extension by two faces

In this subsection, we consider extensions of simplicial surfaces by two faces. We want
to model the scenario illustrated here (where the blue triangles are added):

w1 w2

v

w∗

ev
1

ew
1

ev

ev
2

ew
2

fv1 fv2

We also show that this is the unique extension by two faces, such that the vertex w∗

becomes an inner vertex

Lemma 6.2.6. Let S = (V,E, F, η, ϕ) be a simplicial surface with boundary vertex
w∗ ∈ V . There is a unique simplicial surface T with boundary vertex v satisfying

• S = T−v,

• degT (v) = 2,

• w is an inner vertex of T .

If ew1 , ew2 ∈ E are the boundary edges of S with η(ewk ) = {w∗, wk}, the unique T is given
as (V +, E+, F+, η+, ϕ+) with

V + = V ] {v}, E+ = E ] {ev1, ev, ev2}, F+ = F ] {fv1 , fv2 },
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and

η+ : E+ → Pot2(V +) e 7→


η(e) e ∈ E
{v, w∗} e = ev

{v, wk} e = evk with η(ewk ) = {w∗, wk},

ϕ+ : F+ → Pot3(E+) f 7→
{
ϕ(f) f ∈ F
{ev, ewk , evk} f = fvk .

We also have

degT (w) =


degS(w) w 6∈ {v, w1, w2}
degS(w) + 1 w ∈ {w1, w2}
degS(w) + 2 w = w∗

2 w = v

Proof. We start by showing the uniqueness of T = (V +, E+, F+, η+, ϕ+).

• From V +\{v} = V we obtain V + = V ] {v}.

• From degT (V ) = 2 we obtain F+ = F ] {fv1 , fv2 }.

• Since v is a boundary vertex, we have a maximal umbrella (ev1, fv1 , ev, fv2 , ev2) around
v. This also gives E+ = E ] {ev1, ev, ev2}.

• Since w is an inner vertex with incident boundary edges ew1 and e2
2, we can choose

ew1 ∈ ϕ+(fv1 ) without loss of generality. Since v 6∈ η(ew2 ), we conclude ew2 6∈ ϕ+(fv1 ),
implying ew2 ∈ ϕ+(fv2 ).

This also proves the statement about the map degT .
Next, we show that T = (V +, E+, F+, η+, ϕ+) defined as above actually is a simplicial

surface. However, this is easy to see (similar to Lemma 6.2.1).

The extension constructed in Lemma 6.2.6 deserves a name.

Definition 6.2.7. We call the unique simplicial surface from Lemma 6.2.6 S+v
ew1 ,e

w
2

.

Next, we generalise the extension from Lemma 6.2.6 to extended simplicial surfaces,
analogous to Lemma 6.1.8. However, there is some ambiguity: Since the vertex v is
“new”, we have no information about its external degree. To determine it uniquely,
we need further restrictions. In our case, the construction in Chapter 8 requires the
extended polygonal twilight morphisms to be hexagonal (compare Definition 4.2.11).
This determines the external degree of v uniquely.

We also change our notation. In Lemma 6.2.3, it was sufficient to talk about a single
edge with adjacent vertices. While this description is very simple, it is not suitable
for more complicated assumptions concerning the boundary. Instead, we talk about
vertex–edge–paths on the boundary.
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Lemma 6.2.8. Let (S, d̂eg) be an extended simplicial surface and (v0, e1, v1, e2, v2) a
vertex–edge–path on the boundary, with

d̂eg(v0) > 1, d̂eg(v1) = 2, d̂eg(v2) > 1.

Then, (S+v
e1,e2 , d̂eg

+v
d ) (with d ∈ Z≥1) is an extended simplicial surface with

d̂eg
+v
d (w) =


d̂eg(w) w 6∈ {v, v0, v1, v2}
d̂eg(w)− 1 w ∈ {v0, v2}
0 w = v1

d w = v.

Furthermore, (S, d̂eg)→ (S+v
e1,e2 , d̂eg

+v
d ) is an extended twilight morphism. It is hexago-

nal if and only if d = 4.

Proof. By Lemma 6.2.6, S → S+v
e1,e2 is a twilight morphism. By assumption, (S+v

e , d̂eg
+v
d )

is an extended simplicial surface (only v1 becomes an inner vertex).
To show that (S, d̂eg)→ (S+v

e1,e2 , d̂eg
+v
d ) is an extended twilight morphism, we have to

show deg(w) + d̂eg(w) = degS+v
e1,e2

+ d̂eg
+v
d (w) for all vertices w in S.

• If w 6∈ {v0, v1, v2}, this is clear (since the degrees of the extension do not change).

• If w ∈ {v0, v2}, the definitions are inverse to each other.

• For w = v1, the assumption d̂eg(v1) = 2 is crucial.

The only vertex not in the image is v. Since degS+v
e1,e2

(v) = 2, the twilight morphism

is hexagonal if and only if d̂eg
+v
d (v) = 4.

In Lemma 6.2.8, we extended an extended simplicial surface by two faces. Assuming
the surface we started with was growth–controlled (compare Definition 4.2.4), what can
we say about the modified surface? In contrast to extending by one face (compare
Example 6.2.4), the modified surface is almost always growth–controlled (only very mild
assumptions are necessary).

Lemma 6.2.9. Let (S, d̂eg) be a growth–controlled, extended simplicial surface with
boundary vertex–edge–path (v0, e1, v1, e2, v2) satisfying

d̂eg(v0) > 2, d̂eg(v1) = 2, d̂eg(v2) > 2.

Then, (S+v
e1,e2 , d̂eg

+v
4 ) is growth–controlled.

Proof. We compare the cyclic N–sequences d̂eg and d̂eg
+v
4 in the cyclic graphs ∂S and

∂S+v
e1,e2 .
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We would like to apply Lemma 3.4.13. To do so, we split ∂S = (V1, E1, η1) into the
cyclic intervals induced by

I1 := {v0, v1, v2} J1 := V1\I1.

We split ∂S+v
e1,e2 = (V2, E2, η2) into

I2 := {v0, v, v2} J2 := V2\I2.

By construction of S+v
e1,e2 , we have J1 = J2 and d̂eg(w) = d̂eg

+v
4 (w) for all w ∈ J1. Thus,

Lemma 3.4.13 is applicable.
To prove that d̂eg

+v
4 is growth–controlled, we need to check the properties from Defi-

nition 3.4.11. We repeatedly make use of the following facts:

d̂eg
+v
4 (v0) = d̂eg(v0)− 1,

d̂eg
+v
4 (v) = 4,

d̂eg
+v
4 (v2) = d̂eg(v2)− 1,

• We have

d
d̂eg

+v
4

(I2) = (3− d̂eg
+v
4 (v0)) + (3− d̂eg

+v
4 (v)) + (3− d̂eg

+v
4 (v2))

= (3− d̂eg(v0) + 1) + (3− 4) + (3− d̂eg(v2) + 1)
= (3− d̂eg(v0)) + (3− 2) + (3− d̂eg(v2))
= (3− d̂ef(v0)) + (3− d̂eg(v1)) + (3− d̂eg(v2))
= dd̂eg(I1),

so d
d̂eg

+v
4

(V2) ≤ 0 by Lemma 3.4.13.

• Consider a cyclic interval C2 contained in I2. We have to find a matching cyclic
interval C1 in I1 with dd̂eg(C1) ≥ d

d̂eg
+v
4

(C2). The cases are as follows:

– If C2 = {v0}, we choose C1 = {v0, v1} to obtain

d
d̂eg

+v
4

(C2) = 3− d̂eg
+v
4 (v0) = 3− d̂eg(v0) + (−1) = dd̂eg(C1).

– If C2 = {v2}, we choose C1 = {v1, v2} to obtain

d
d̂eg

+v
4

(C2) = 3− d̂eg
+v
4 (v2) = 3− d̂eg(v2) + (−1) = dd̂eg(C1).

– If C2 = {v0, v}, we choose C1 = {v0} to obtain

d
d̂eg

+v
4

(C2) = 3− d̂eg
+v
4 (v0) + 1 = 3− d̂eg(v0) = dd̂eg(C1).
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– If C2 = {v, v2}, we choose C1 = {v2} to obtain

d
d̂eg

+v
4

(C2) = 3− d̂eg
+v
4 (v2) + 1 = 3− d̂eg(v2) = dd̂eg(C1).

– C2 = {v, v0, v2}, we choose C1 = {v0, v1, v2} to obtain

dd̂eg(C2) = 3− d̂eg
+v
4 (v0) + 1 + 3− d̂eg

+v2
4

= 3− d̂eg(v0) + (−1) + 3− d̂eg(v2)
= dd̂eg(C1).

• The final case (by Lemma 3.4.6) is a cyclic interval in ∂S+v
e1,e2 that intersects I2 in

{v0, v2}. This interval is generated by V2\{v}. But then,

d
d̂eg

+v
4

(V2\{v}) = d
d̂eg

+v
4

(V2)− d
d̂eg

+v
4

({v}) ≤ 0− (3− 4) = 1 ≤ 2.

Since all cyclic intervals are defect–controlled, d̂eg
+v
4 is growth–controlled. To show that

(S+v
e1,e2 , d̂eg

+v
4 ) is growth–controlled, we need one more condition according to Definition

4.2.4, namely d̂eg
+v
4 (w) > 1 for all w ∈ V2. This is guaranteed by our analysis from the

start of the proof.

6.2.3 Extension by three faces

In this subection, we consider extensions of simplicial surfaces by three faces. We want
to model the scenario illustrated here (where the blue triangles are added):

ê0

ê1 ê2

ê3

e1

e2

e3
f̂1

f̂2

f̂3

v0 v3v

v1 v2

We also show that this is the unique extension by three faces, such that both vertices v1
and v2 become inner vertices.

Lemma 6.2.10. Let S = (V,E, F, η, ϕ) be a simplicial surface with non–repeating bound-
ary vertex–edge–path (v0, e1, v1, e2, v2, e3, v3), where v0 6= v3. There is a unique simplicial
surface T with boundary vertex v satisfying
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• S = T−v,

• degT (v) = 3,

• v1 and v2 are inner vertices of T .

The unique T is given as (V +, E+, F+, η+, ϕ+) with

V + = V ] {v}, E+ = E ] {ê0, ê1, ê2, ê3}, F+ = F ] {f̂1, f̂2, f̂3},

and

η+ : E+ → Pot2(V +) e 7→
{
η(e) e ∈ E
{v, vk} e = êk.

ϕ+ : F+ → Pot3(E+) f 7→
{
ϕ(f) f ∈ F
{ek, êk−1, êk} f = f̂k.

We also have

degT (w) =


degS(w) w 6∈ {v, v0, v1, v2, v3}
degS(w) + 1 w ∈ {v0, v3}
degS(w) + 2 w ∈ {v1, v2}
3 w = v.

Proof. We start by showing the uniqueness of T = (V +, E+, F+, η+, ϕ+).

• From V +\{v} = V we obtain V + = V ] {v}.

• From degT (v) = 3 we obtain F+ = F ] {f̂1, f̂2, f̂3}.

• If two edges from {e1, e2, e3} were incident to the same f̂k, the vertex v could not
be incident to that face. Since all ek are inner vertices in T (they are adjacent to
the inner vertices v1 or v2), we have (without loss of generality), ek ∈ ϕ+(f̂k).

• ek ∈ ϕ+(f̂k) implies (η+]ϕ+)(f̂k) = {vk−1, vk, v}. Thus, there are edges ê0, . . . , ê3
with η+(êk) = {v, vk}. From v1 6= v3 we can deduce that ê0 6= ê3.

This also proves the statement about the map degT .
It is easy to see that this T = (V +, E+, F+, η+, ϕ+) is a simplicial surface.

The extension constructed in Lemma 6.2.10 deserves a name.

Definition 6.2.11. We call the unique simplicial surface from Lemma 6.2.10 S+v
e1,e2,e3.

Next, we generalise the extension from Lemma 6.2.10 to extended simplicial surfaces,
analogous to Lemma 6.1.8. However, there is some ambiguity: Since the vertex v is
“new”, we have no information about its external degree. To determine it uniquely,
we need further restrictions. In our case, the construction in Chapter 8 requires the
extended polygonal twilight morphisms to be hexagonal (compare Definition 4.2.11).
This determines the external degree of v uniquely.
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Lemma 6.2.12. Let (S, d̂eg) be an extended simplicial surface with a non–repeating
vertex–edge–path (v0, e1, v1, e2, v2, e3, v3) on the boundary, such that v0 6= v3 and

d̂eg(v0) > 1, d̂eg(v1) = 2, d̂eg(v2) = 2, d̂eg(v3) > 1.

Then, (S+v
e1,e2,e3 , d̂eg

+v
d ) is an extended simplicial surface with

d̂eg
+v
d (w) =


d̂eg(w) w 6∈ {v, v0, v1, v2, v3}
d̂eg(w)− 1 w ∈ {v0, v3}
0 w ∈ {v1, v2}
d w = v.

Furthermore, (S, d̂eg)→ (S+v
e1,e2,e3 , d̂eg

+v
d ) is an extended twilight morphism. It is hexag-

onal if and only if d = 3.

Proof. By Lemma 6.2.10, the inclusion S → S+v
e1,e2,e3 is a twilight morphism. By as-

sumption, (S+v
e1,e2,e3 , d̂eg

+v
d ) is an extended simplicial surface (only v1 and v2 become

inner vertices).
To show that (S, d̂eg)→ (S+v

e1,e2,e3 , d̂eg
+v
d ) is an extended twilight morphism, we have

to show deg(w) + d̂eg(w) = degS+v
e1,e2,e3

+ d̂eg
+v
d (w) for all vertices w in S.

• If w 6∈ {v0, v1, v2, v3}, this is clear (since the degrees of the extension do not change).

• If w ∈ {v0, v3}, the definitions are inverse to each other.

• For w ∈ {v1, v2}, the assumptions d̂eg(v1) = d̂eg(v2) = 2 are crucial.

The only vertex not in the image is v. Since degS+v
e1,e2,e3

(v) = 3, the twilight morphism

is hexagonal if and only if d̂eg
+v
d (v) = 3.

In Lemma 6.2.12, we extended an extended simplicial surface by three faces. If the
surface we started with was growth–controlled (compare Definition 4.2.4), the modified
surface is growth–controlled as well. Contrast this with the extension by one face in
Lemma 6.2.5, where we need very strict assumptions (restrictions on possible defect–
sums), and the extension by two faces in Lemma 6.2.9, where some mild assumptions
(restrictions on possible external degrees) are necessary.

Lemma 6.2.13. Let (S, d̂eg) be a growth–controlled extended simplicial surface with
boundary vertex–edge–path (v0, e1, v1, e2, v2, e3, v3) with v0 6= v3 and

d̂eg(v1) = d̂eg(v2) = 2.

Then, (S+v
e1,e2,e3 , d̂eg

+v
3 ) is growth–controlled.
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Proof. First, we have to show that (S+v
e1,e2,e3 , d̂eg

+v
3 ) actually exists. By Lemma 6.2.12,

we need d̂eg(v0) > 1 and d̂eg(v3) > 1. Since d̂eg is defect–controlled, we have

2 ≥ dd̂eg({v0, v1, v2}) = 3− d̂eg(v0) + 2 = 5− d̂eg(v0).

so d̂eg(v0) ≥ 3. The same argument applies to v3.
To show that d̂eg

+v
3 is growth–controlled, we compare the cyclic graphs ∂S and

∂S+v
e1,e2,e3 , together with the cyclic N–sequences d̂eg and d̂eg

+v
3 .

We would like to apply Lemma 3.4.13. To do so, we split ∂S = (V1, E1, η1) into the
cyclic intervals induced by

I1 := {v0, v1, v2, v3} J1 := V1\I1.

We split ∂S+v
e1,e2,e3 = (V2, E2, η2) into

I2 := {v0, v, v3} J2 := V2\I2.

By construction of S+v
e1,e2,e3 , we have J1 = J2 and d̂eg(w) = d̂eg

+v
3 (w) for all w ∈ J1.

Thus, Lemma 3.4.13 is applicable.
To prove that d̂eg

+v
3 is growth–controlled, we check the conditions of Definition 3.4.11.

• We have

d
d̂eg

+v
3

(I2) = (3− d̂eg
+v
3 (v0)) + (3− d̂eg

+v
3 (v)) + (3− d̂eg

+v
3 (v3))

= (3− d̂eg(v0) + 1) + (3− 3) + (3− d̂eg(v2) + 1)
= (3− d̂eg(v0)) + (3− 2) + (3− 2) + (3− d̂eg(v3))
= (3− d̂ef(v0)) + (3− d̂eg(v1)) + (3− d̂eg(v2)) + (3− d̂eg(v3))
= dd̂eg(I1),

so d
d̂eg

+v
3

(V2) ≤ 0 by Lemma 3.4.13.

• Consider a cyclic interval C2 contained in I2. We have to find a matching cyclic
interval C1 in I1 with dd̂eg(C1) ≥ d

d̂eg
+v
3

(C2). We choose as follows:

– If C2 = {v0}, we choose C1 = {v0, v1} to obtain

d
d̂eg

+v
3

(C2) = 3− d̂eg
+v
3 (v0) = 3− d̂eg(v0) + 1 = dd̂eg(C1).

– If C2 = {v3}, we choose C1 = {v2, v3} to obtain

d
d̂eg

+v
3

(C2) = 3− d̂eg
+v
3 (v3) = 3− d̂eg(v3) + 1 = dd̂eg(C1).
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– If C2 = {v0, v}, we choose C1 = {v0, v1} to obtain

d
d̂eg

+v
3

(C2) = 3− d̂eg
+v
3 (v0) = 3− d̂eg(v0) + 1 = dd̂eg(C1).

– If C2 = {v3, v}, we choose C1 = {v2, v3} to obtain

d
d̂eg

+v
3

(C2) = 3− d̂eg
+v
3 (v3) = 3− d̂eg(v3) + 1 = dd̂eg(C1).

– If C2 = {v0, v3, v}, we choose C1 = {v0, v1, v2, v3} to obtain

d
d̂eg

+v
3

(C2) = 3− d̂eg
+v
3 (v0) + 3− d̂eg

+v
3 (v3)

= 3− d̂eg(v0) + 1 + 1 + 3− d̂eg(v3)
= dd̂eg(C1).

• The final case (by Lemma 3.4.6) is a cyclic interval in ∂S+v
e1,e2,e3 that intersects I2

in {v0, v3}. This interval is generated by V2\{v}. But then,

d
d̂eg

+v
3

(V2\{v}) = d
d̂eg

+v
3

(V2)− d
d̂eg

+v
3

({v}) ≤ 0− (3− 4) = 1 ≤ 2.

Since all cyclic intervals are defect–controlled, d̂eg
+v
3 is growth–controlled. To show

that (S+v
e1,e2,e3 , d̂eg

+v
3 ) is growth–controlled, we need one more condition according to

Definition 4.2.4, namely d̂eg
+v
3 (w) > 1 for all w ∈ V2. This is guaranteed by our

assumption on d̂eg (compare the definition of d̂eg
+v
3 in Lemma 6.2.12).
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7 Hexagonal lattice

While working with combinatorial objects, one usually eschews their geometric realisa-
tions in favour of notions like incidence or colouring. But sometimes, it is easiest to
define (and work with) a combinatorial structure by embedding it into a certain space.

In this chapter, we work with the infinite hexagonal lattice, which we visualise like an
infinitely continued version of this illustration:

In Section 7.1, we construct this lattice geometrically and show that it can be repre-
sented as a combinatorial surface. Then, we construct its automorphism group explicitly.

In Section 7.2, we work with paths within the hexagonal lattice. We pay particular at-
tention to those combinatorial paths that correspond to Jordan–curves in the embedded
lattice, and give a criterion to construct such a path with certain specifications.

In Section 7.3, we follow a differential–geometric approach and represent each twisted
triangular surface as a subset of the hexagonal lattice, together with certain “transition
maps”. We show how the combinatorial properties of the twisted triangular surface relate
to group–theoretic properties of the transition maps.

7.1 Definition and basic properties

In this section, we define the infinite hexagonal lattice explicitly, and construct its au-
tomorphism group. To facilitate this, we define some helpful notation.

Notation 7.1.1. If p ∈ Z2, we define

p+0 := p+
(

1
0

)
p++ := p+

(
1
1

)
p0+ := p+

(
0
1

)

p−0 := p−
(

1
0

)
p−− := p−

(
1
1

)
p0− := p−

(
0
1

)
.
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Definition 7.1.2. The hexagonal lattice surface is the vertex–faithful simplicial sur-
face (V,E, F, η, ϕ) with

• V = Z2,

• E = E− ] E\ ] E/ with

E− = {{p, p+0} | p ∈ V },
E\ = {{p, p++} | p ∈ V },
E/ = {{p, p0+} | p ∈ V }

• F = F+ ] F− with

F+ = {{p, p+0, p++} | p ∈ V }
F− = {{p, p++, p0+} | p ∈ V }

• η : E → Pot2(V ) is the identity mapping,

• ϕ : F → Pot3(E) with ϕ(f) = Pot2(f).

The hexagonal lattice embedding is the map

V → R2,

(
a1
a2

)
7→ a1

(
1
0

)
+ a2

(
−1

2√
3

2

)
.

The set of images of this map is the hexagonal lattice.

Well–defined. We have to show that the hexagonal lattice surface is in fact a simplicial
surface. We start with checking the conditions for a vertex–faithful triangular complex
from Lemma 2.7.5:

1. The maps η and id : F → Pot3(V ) are injective.

2. The vertex p is contained in the edge {p, p++}.

3. The edges {p, p+0} and {p, p++} are contained in the face {p, p+0, p++}. The edge
{p, p0+} is contained in the face {p, p++, p0+}.

4. For the face {p, p+0, p++}, only the subset {p+0, p++} has to be checked. With
q := p+0 we have {p+0, p++} = {q, q0+}.
For the face {p, p++, p0+}, only the subset {p++, p0+} has to be checked. With
q := p0+ we have {p++, p0+} = {q+0, q}.

Therefore, (V,E, F, η, ϕ) is a vertex–faithful triangular complex.
To show that it is a simplicial surface, we have to show that there are neither ramified

edges nor ramified vertices (compare Definition 2.5.27).
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• Every edge has a “direction”, one of
(

1
0

)
,
(

0
1

)
, and

(
1
1

)
. In each face, there is one

edge of each direction. For both types of faces, if we know one edge specifically,
the face is unique. Thus, every edge is incident to exactly two faces (one of each
type).

• Finally, consider a vertex p. We want to show that this is an inner vertex. To
show this, we compute all edges and faces incident to this vertex. The edges are

{{p, p+0}, {p, p++}, {p, p0+}, {p−0, p}, {p−−, p}, {p0−, p}}

and the faces are

{{p, p+0, p++}, {p, p++, p0+}, {p−0, p, p0+},
{p−−, p, p−0}, {p−−, p0−, p}, {p0−, p+0, p}}.

It is easy to see that we can arrange these edges and faces in one umbrella. Thus,
v is an inner vertex.

This completes the proof.

Next, we consider the automorphisms of the hexagonal lattice surface. We start by
relating its action on the flags of H to its action on vertex triples.

Remark 7.1.3. Let H = (V,E, F, η, ϕ) be the hexagonal lattice surface. The action of
Aut(H) on the flags of H is equivariant to the action of Aut(H) on triples

{(v1, v2, v3) ∈ V 3 | ∃f ∈ F with η]ϕ(f) = {v1, v2, v3}}.

Proof. Let F(H) refer to the flags of H. We define the map

ρ : F(H)→ {(v1, v2, v3) ∈ V 3 | ∃f ∈ F with η]ϕ(f) = {v1, v2, v3}}

as follows: The flag (v, e, f) ∈ F(H) is mapped to the triple (v, ve, vf ) with η(e) = {v, ve}
and (η]ϕ)(f) = {v, ve, vf}.

We have to show that ρ is bijective. Since H is vertex–faithful, there is at most one
preimage of each x ∈ V 3. By definition, there is always at least one preimage.

Finally, we show equivariance (Definition 4.3.4). Let µ = (µV , µE , µF ) ∈ Aut(H).
Then, µ(v, e, f) = (µV (v), µE(e), µF (f)). Since µ is an automorphism, we have

η(µE(e)) = {µV (v), µV (ve)}, (η]ϕ)(µF (f)) = {µV (v), µV (ve), µV (vf )}.

This implies the equivariance of the actions.

The rewriting of Remark 7.1.3 makes it easy to concretely write down the automor-
phism group.
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Lemma 7.1.4. Let H be the hexagonal lattice surface. Aut(H) = D12 n Z2, with
D12 = 〈r,m〉 and

r =
(

1 −1
1 0

)
, m =

(
0 −1
−1 0

)
,

with action

Aut(H)× Z2 → Z2 ((M, t),
(
a1
a2

)
) 7→M

(
a1
a2

)
+ t.

Furthermore, Aut(H) acts regularly on the flags of H.

Proof. The element (M, t) ∈ D12 n Z2 maps x ∈ Z2 to Mx+ t. To show that this map
induces an automorphism of H, it suffices to show that its generators induce automor-
phisms of H.

• Clearly, translations by t ∈ Z2 preserve edges and faces.

• For the matrix r, we have

r.p+0 = (rp)++, r.p++ = (rp)0+, r.p0+ = (rp)−0.

This induces the following map on edges:

{p, p+0} 7→ {rp, (rp)++}
{p, p++} 7→ {rp, (rp)0+}
{p, p0+} 7→ {(rp)−0, rp}

On the faces, it acts like this:

{p, p+0, p++} 7→ {rp, (rp)++, (rp)0+}
{p, p++, p0+} 7→ {(rp)−0, rp, (rp)0+}

• For the matrix m, we have

m.p+0 = (mp)0−, m.p++ = (mp)−−, m.p0+ = (mp)−0.

This induces the following map on edges:

{p, p+0} 7→ {(mp)0−,mp}
{p, p++} 7→ {(mp)−−,mp}
{p, p0+} 7→ {(mp)−0,mp}

On the faces, it acts like this:

{p, p+0, p++} 7→ {(mp)−−, (mp)0−,mp}
{p, p++, p0+} 7→ {(mp)−−,mp, (mp)−0}
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Thus, D12 n Z2 ≤ Aut(H). We consider the action on the flags of H, under the equiv-
ariance of Remark 7.1.3.

Let (v1, v2, v3) ∈ V 3 and (w1, w2, w3) ∈ V 3. By applying translations, we can assume
that v1 = w1 = 0. Since 〈r〉 acts transitively on{(

1
0

)
,

(
1
1

)
,

(
0
1

)
,

(
−1
0

)
,

(
−1
−1

)
,

(
0
−1

)}
,

we can furthermore assume that v2 = w2 =
(

1
1

)
. Then, the final vertex lies in

{
(

1
0

)
,

(
0
1

)
}. Since

mr2.

(
1
0

)
= m

(
0
−1

)
=
(

0
1

)
,

the group D12 n Z2 acts transitively on the flags of H.
For any α ∈ Aut(H), there is a β ∈ D12 nZ2 such that αβ stabilises a flag (v1, v2, v3).

But if the images of {v1, v2, v3} are determined, the images of their neighbours are as
well. Therefore, the automorphism stabilises H pointwise. This implies α ∈ D12 n Z2.
Since the stabiliser of each flag is trivial, the regularity of the action also follows.

For concrete calculations, it is useful to know that we can write the elements of
D12 = 〈r,m〉 uniquely.

Remark 7.1.5. Let g ∈ D12 = 〈r,m〉 with notation from Lemma 7.1.4. Then, g = rk

or g = rkm with 0 ≤ k ≤ 5.

Proof. We can write any g ∈ 〈r,m〉 as a word in r and m, since both have finite order.
Since mr = r5m, the claim follows.

7.2 Polygons
In the previous Section 7.1, we defined the hexagonal lattice surface. In this section, we
deal with certain vertex–edge–paths (compare Definition 5.2.10) in the hexagonal lattice
surface. Namely, those paths that correspond to Jordan–curves in the hexagonal lattice
embedding.

This allows us to define an inner degree for those curves. The main result of this
section is Lemma 7.2.7, in which we construct one of these paths with certain specified
inner degrees.

We start with the definition of these paths. Since the hexagonal lattice surface is
vertex–faithful, the path is uniquely determined by its vertices.

Definition 7.2.1. Let H = (V,E, F, η, ϕ) be the hexagonal lattice surface. A hexagonal
path is a sequence (p1, p2, . . . , pn) with pi ∈ Z2 such that pi and pi+1 are adjacent in H.
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It is called closed if p1 = pn and non–intersecting if pi 6= pj for i 6= j (exception
for the pair {1, n}).

A closed, non–intersecting hexagonal path is called hexagonal polygon path.

A particular simple hexagonal polygon path consists of all points with fixed distance
d to the origin (where we measure distance as the number of edges in a minimal vertex–
edge–paths).

Example 7.2.2. Let H be the hexagonal lattice surface and d ≥ 1. Then,

(p0, p1, . . . , p6d)

with

pk =



(
d

k

)
0 ≤ k ≤ d(

2d− k
d

)
d ≤ k ≤ 2d(

2d− k
3d− k

)
2d ≤ k ≤ 3d(

−d
3d− k

)
3d ≤ k ≤ 4d(

k − 5d
−d

)
4d ≤ k ≤ 5d(

k − 5d
k − 6d

)
5d ≤ k ≤ 6d

is a hexagonal polygon path.

Proof. It is easy to see that the definition of pk is self–consistent and that it defines
a closed hexagonal path. It remains to show that it is non–intersecting. Assume that
pk = pl for some k 6= l. Since all points within one case of the definition are distinct, k
and l belong to different cases.

If we consider the first component, it is clear that the cases for 0 ≤ k ≤ d and
3d ≤ k ≤ 4d cannot occur. A consideration of the second component excludes d ≤ k ≤ 2d
and 4d ≤ k ≤ 5d. Thus, the only remaining option is 2d ≤ k ≤ 3d and 5d ≤ l ≤ 6d, i. e.(

2d− k
3d− k

)
=
(
l − 5d
l − 6d

)
,

implying the contradictory statements 7d = k + l = 9d. Thus, the given path is a
hexagonal polygon path.

Since the hexagonal lattice surface can be embedded into the plane, it is only natural
that this embedding maps hexagonal polygon paths to Jordan–curves.
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Remark 7.2.3. Let P = (p1, p2, . . . , pn) be a hexagonal polygon path and ιH : H → R2

the hexagonal lattice embedding. Then the path ρP : [1, n]→ R2 with

ρP (x) := (1− x+ bxc) · ιH(pbxc) + (x− bxc) · ιH(pbxc+1)

describes a continuous, closed non–intersecting curve in R2.
By the Jordan–curve–theorem, its complement has two connected components, of

which exactly one is bounded.

Proof. Let k ∈ Z with k ≤ x < k + 1, then

ρP (x) = (1− (x− k))ιH(pk) + (x− k)ιH(pk+1).

Thus, ρP is continuous on the interval [k, k + 1). To show continuity at k + 1, consider

lim
x→k+1

(1− (x− k))ιH(pk) + (x− k)ιH(pk+1) = ιH(pk+1) = ρP (k + 1).

Thus, ρP is continuous.
To prove that the path is closed, it is sufficient to show that ρP (1) = ιH(p1) and

ρP (n) = ιH(pn) coincide. Since (p1, p2, . . . , pn) is a closed path by Definition 7.2.1,
p1 = pn holds.

Since (p1, p2, . . . , pn) is non–intersecting by Definition 7.2.1 and ιH is an embedding,
ρP (i) 6= ρP (j) for 1 ≤ i < j < n. Since ρP ([k, k + 1]) is a subset of the edge between pk
and pk+1, and the edges are disjoint, ρP is non–intersecting.

Proofs of the Jordan–curve–theorem can be found in many sources, for example [69,
Theorem 1.1], [36, Proposition 2B.1], [59, Theorem 6.35], and [62, Theorem 15].

Remark 7.2.3 allows us to lift the Jordan–curve–theorem to the discrete setting of
hexagonal lattice surfaces. In particular, it allows us to define the interior faces of a
hexagonal polygon path.

Definition 7.2.4. Let P = (p1, p2, . . . , pn) be a hexagonal polygon path in the hexagonal
lattice surface H = (V,E, F, η, ϕ). Define the interior faces of P as the set of faces
that are mapped by ιH to the bounded connected component of R2\ρP ([1, n]), with ρP
defined as in Remark 7.2.3.

Define the inner degree dP (pi) as the number of interior faces adjacent to pi.

From the face partition in Definition 7.2.4, we can deduce certain combinatorial prop-
erties of inner edges. These are based on the observation that an edge lying on the
hexagonal polygon path is incident to a face on the inside and one on the outside of the
hexagonal polygon path.

Lemma 7.2.5. Let P be a hexagonal polygon path. Let f be an interior face of P and
g a face adjacent to f . The edge between them lies on the path P if and only if g is not
an interior face.
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Proof. In the embedding, there is a continuous path between the faces. If the edge
between f and g does not lie on the path P , the continuous path does not cross the
closed curve from Remark 7.2.3, so f and g lie in the same connected component of the
complement.

If the edge between them lies on the path, the continuous path crosses the path once,
which means a switching of components.

Next, we relate the vertices in a hexagonal polygon path to the inner degrees. Let P =
(p1, p2, . . . , pn) be a hexagonal polygon path and consider the following two situations
(where green faces should be interpreted as interior faces):

pk−1
pk

pk+1

pk−1
pk

pk+1

In both cases, we have pk−pk−1 =
(

1
0

)
. We search for a relation between the difference

pk+1 − pk and the inner degree dP (pk). In the left case, we have pk+1 − pk =
(

0
1

)
, and

in the right case, pk+1 − pk =
(

0
−1

)
. If we define the rotation matrix

R :=
(

1 −1
1 0

)
,

we can write pk+1− pk = R2(pk − pk−1) in the left case and pk+1− pk = R−1(pk − pk−1)
in the right case. This seems to generalise to the rule

pk+1 − pk = R3−dP (pk)(pk − pk−1).

However, this argument relies on the choice of interior faces. Had we interpreted the
yellow faces as the interior ones, we would conclude the rule

pk+1 − pk = R−3+dP (pk)(pk − pk−1).

Fortunately, only one of these rules applies for the complete hexagonal polygon path,
which we show in the next lemma.
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Lemma 7.2.6. Let P = (p1, p2, . . . , pn) be a hexagonal polygon path. Let

R :=
(

1 −1
1 0

)
.

Then one of these two cases holds:

• pi+1 − pi = R3−dP (pi)(pi − pi−1) for all i.

• pi+1 − pi = R−3+dP (pi)(pi − pi−1) for all i.

Proof. Let ei be the edge in H that is incident to pi and pi+1. By Lemma 7.2.5:

• For each ei, there is exactly one face fi incident to ei, that is an interior face of P .

• The umbrella of pi is separated into two umbrella paths by removing ei−1 and ei.
The faces fi−1 and fi then have to belong to the same part of the umbrella.

We know that

pi+1 − pi ∈
{(

1
0

)
,

(
0
1

)
,

(
1
1

)
,

(
−1
0

)
,

(
−1
−1

)
,

(
0
−1

)}
.

Since Aut(H) acts regularly on triples of adjacent vertices by Lemma 7.1.4 and Re-
mark 7.1.3, it also acts transitively on pairs of adjacent vertices. Thus, without loss of

generality, we set p1 =
(

0
0

)
and p2 =

(
1
0

)
.

(
1
0

)

BA

(
0
0

)

E D

C

(
1
1

)(
0
1

)

(
−1
−1

) (
0
−1

)

(
1
0

)gu

gd

We differentiate according to f1:

1. If f1 = gu, we further differentiate between the possible positions of p3:
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a) If p3 = A, then dP (p2) = 1 and p3 − p2 =
(

0
1

)
.

b) If p3 = B, then dP (p2) = 2 and p3 − p2 =
(

1
1

)
.

c) If p3 = C, then dP (p2) = 3 and p3 − p2 =
(

1
0

)
.

d) If p3 = D, then dP (p2) = 4 and p3 − p2 =
(

0
−1

)
.

e) If p3 = E, then dP (p2) = 5 and p3 − p2 =
(
−1
−1

)
.

Thus, p3 − p2 = R3−dP (p2)(p2 − p1).
To extend this partial result to all 1 ≤ i ≤ n, we perform an automorphism of H

that transforms p2 into
(

0
0

)
and p3 into

(
1
0

)
, as well as f2 into f1. Therefore, the

same result applies to all i.

2. If f1 = gd, all degrees are replaced by 6 − degP (p2) in contrast to the first case.
This gives the result in the second case.

Lemma 7.2.6 is crucial to establish the main result of this section: an existence state-
ment for hexagonal polygon paths with specified inner degrees.

Lemma 7.2.7. Let T = (t1, t2, . . . , tk) ∈ Nk such that

1. 1 ≤ ti ≤ 5 for all 1 ≤ i ≤ k and

2. for all 1 ≤ a < b ≤ k we have |
∑b
i=a(3− ti)| ≤ 2.

Then there exists a hexagonal polygon path P = (p1, p2, . . . , pn) with n > k such that
dP (pi) = ti for all 1 ≤ i ≤ k.

Proof. We construct the hexagonal polygon path explicitly. Define

p1 :=
(

0
0

)
, p2 :=

(
1
0

)
, pi+1 := pi +R3−ti(pi − pi−1)

for all 2 < i < k. This defines a sequence (p1, p2, . . . , pk+1). If we can show that we
extend this to a hexagonal polygon path P = (p1, p2, . . . , pk+1, . . . , pn), such that the

face
{(

0
0

)
,

(
1
0

)
,

(
1
1

)}
is an interior face of the path, the claim follows from Lemma

7.2.6 (since ti = dP (pi)).
Thus, we need to show that (p1, p2, . . . , pk+1) is a non–intersecting path and that it can

be extended to a hexagonal polygon path. To show that the path is non–intersecting,
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we consider the difference vectors di := pi+1 − pi for 1 ≤ i < k. If pa = pb for any
1 ≤ a < b ≤ k + 1, we would have

p1 +
a−1∑
i=1

di = p1 +
b−1∑
i=1

di.

This can be rewritten as pa = pa +
∑b−1
i=a di. It is therefore sufficient to show that any

such sum cannot be 0. By applying an appropriate power of R, we can always assume

da =
(

1
0

)
.

By induction, we obtain for all 1 ≤ a < b < k

db = R
∑b−1

i=a(3−ti)da. (7.1)

By our additional assumption, this implies db = Rxda with x ∈ {−2,−1, 0, 1, 2}. The
possible vectors are

R−2da =
(
−1
−1

)
, R−1da =

(
0
−1

)
, R0da =

(
1
0

)
, R1da =

(
1
1

)
, R2da =

(
0
1

)
.

Assume
∑b−1
i=a di = 0. Since da =

(
1
0

)
, there has to be a a < j < b with dj = R−2da

(consider first component). If any di with a < i < j fulfilled di = Rda or di = R2da,
Equation 7.1 would make this impossible, since this implies dj = Rxdi with x ∈ {3,−4},
in contradiction to our assumption The same argument applies for j < i < b.

But then, we have {da, da+1, . . . , db−1} ⊆ {da, Rda, R2da}. Considering the second
component, all of them have to be equal to da. This is a contradiction to dj 6= da.
Therefore, this hexagonal path is non–intersecting.

To complete the proof, we have to extend (p1, . . . , pk+1) to a hexagonal polygon path.
We can extend the hexagonal path in both directions, always with inner degree 3 (this
extended path also fulfils the conditions of this lemma, therefore we do not produce any
new intersections). Since the path so far was bounded, it has some maximal distance D
to the origin. We extend the path in both directions up to distance D + 1. Thus, the
path has two vertices in common with the hexagonal polygon path from Example 7.2.2.
We can now complete our path in two different ways, and we choose in such a way that

the face
{(

0
0

)
,

(
1
0

)
,

(
1
1

)}
becomes an interior face of the resulting hexagonal polygon

path.

7.3 Transition maps
In the previous sections, we defined the hexagonal lattice surface and worked with com-
binatorial closed paths. In this section, we apply a differential–geometric approach: We
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represent a triangular combinatorial surface as a subset of the hexagonal lattice, together
with certain transition maps (made precise in Definition 7.3.5).

This approach has been very successful for translation surfaces (called origamis),
where it connects the combinatorial structure of a discrete surface build from squares
with its differential–geometric properties. For an introduction, compare [70].

Inspired by this success, we analyse triangular combinatorial surfaces under this per-
spective as well. Conceptually, we map each face of the combinatorial surface to a face
of the hexagonal lattice surface. If two faces are adjacent, there is an automorphism of
the hexagonal lattice mapping the first image next to the second image. These special
automorphisms are the transition maps.

Before we formally define transition maps, we illustrate it on an example.
Example 7.3.1. Consider the following situation in the hexagonal lattice surface:

c1

c2
b

(
0
0

) (
1
0

)

(
1
1

)(
0
1

)

(
2
0

)

(
1
−1

) (
2
−1

)

We want to map the flag c1 to the flag b (2–adjacent to the flag c2). For that, we need
to find an (M, t) ∈ D12 n Z2 with

M

(
1
1

)
+ t =

(
2
0

)
M

(
1
0

)
+ t =

(
1
−1

)
M

(
0
0

)
+ t =

(
1
0

)
.

This is satisfied by

M = r−1 =
(

0 1
−1 1

)
t =

(
1
0

)
.

We generalise the process from Example 7.3.1 into the definition of transition map.
Definition 7.3.2. Let H be the hexagonal lattice surface and (v1, e1, f1) and (v2, e2, f2)
be flags. The unique α ∈ Aut(S) with

α(v1) = v2 α(e1) = e2 α(f1) 6= f2

is called transition map from (v1, e1, f1) to (v2, e2, f2).
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Well–defined. Since H is a closed surface, there is exactly one flag (v2, e2, g) with f2 6= g
by Remark 2.7.11. Since D12 n Z2 acts regular on the flags, there is exactly one such
map α (compare Lemma 7.1.4 and Remark 7.1.3).

If we know the transition map from a flag c1 to a flag c2, we can also describe the
transition map from c2 to c1.

Remark 7.3.3. Let H be the hexagonal lattice surface and α the transition map from
the flag c1 to the flag c2. Then, α−1 is the transition map from the flag c2 to the flag c1.

Although we defined transition maps on flags, their primary importance comes from
mapping faces.

Remark 7.3.4. Let H be the hexagonal lattice surface and α the transition map from
the flag c1 to the flag c2. Then, the face α(λ2(c1)) is adjacent to the face λ2(c2), via the
edge λ1(c2).

At this point, we can define the differential–geometric structure of a twisted triangular
surface. Intuitively, this corresponds to the following construction:

1. Map every face of the twisted triangular surface S to a face of the hexagonal lattice
surface H. Formally, we represent this as a map from the chambers of S to the
flags of H, such that faces are preserved.

2. Then, we need to preserve the adjacencies between faces. If two adjacent faces in
S are mapped to some non–adjacent faces, we need a transition map to “shift” one
of them so that it becomes adjacent to the other one.

In total, this describes the twisted triangular surface S.

Definition 7.3.5. Let S = (V,E, F,C, λ, σ0, σ1,∼) be a twisted triangular surface and
H the hexagonal lattice surface with flags F and involutions σH0 and σH1 from Remark
2.5.11 and Remark 2.5.12

A net of S is a map ρ : C → F satisfying

ρ(σ0(c)) = σH0 (ρ(c)) ρ(σ1(c)) = σH1 (ρ(c))

for all chambers c ∈ C.
For each c ∈ C, let αc be the transition map from ρ(c) to ρ(c∗) with [c]∼ = {c, c∗}.

The transition group of the net is the subgroup of D12 nZ2 generated by {αc | c ∈ C}

We emphasize that there are several nets for each twisted triangular surface, which
can differ substantially.

Example 7.3.6. Consider the twisted triangular surface (V,E, F,C, λ, σ0, σ1,∼) with

V = {v}, E = {e1, e2, e3}, F = {f1, f2}, C = {c1, . . . , c12},
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and

λ : C → V × E × F, ck 7→



(v, e1, f1) k ∈ {1, 2}
(v, e2, f1) k ∈ {3, 4}
(v, e3, f1) k ∈ {5, 6}
(v, e1, f2) k ∈ {7, 8}
(v, e3, f2) k ∈ {9, 10}
(v, e2, f2) k ∈ {11, 12}

σ0 = (c1, c2)(c3, c4)(c5, c6)(c7, c8)(c9, c10)(c11, c12)
σ1 = (c1, c6)(c2, c3)(c4, c5)(c7, c12)(c8, c9)(c10, c11)
∼ : {c1, c7}, {c2, c8}, {c3, c11}, {c4, c12}, {c5, c9}, {c6, c10},

that is illustrated by

1 2
3

45

6

7 8
9

1011

12

We now consider two different nets.

1. Consider the net ρ : C → CH , like in this illustration:

1 2
3

45

6

7 8
9

1011

12
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The transition maps are translations:

+
(

0
0

)
±
(

1
0

)
±
(

0
1

)

Thus, the transition group of this net is Z2.

2. Consider the net ρ : C → CH , like in this illustration:

1 2
3

45

6
7 8

9

1011

12

(0, 0) (1, 0)

(0, 1)

We compute the transition maps (M, t) between the flags:

1 7→ 7 M = rm t =
(

2
2

)

3 7→ 11 M = rm t =
(

1
1

)

5 7→ 9 M = rm t =
(

2
1

)

Example 7.3.6 illustrates that the transition group heavily depends on the concrete
net ρ. In particular, if the twisted triangular surface has sufficiently many faces, we can
construct a net that has D12 n Z2 as its transition group.

But like with origamis (mentioned at the start of Section 7.3), it is not important that
there are arbitrarily horrible nets. Rather, it is important that we can find a net that is
nice. In the remainder of this section, we characterise which surfaces have “nice” nets.

Obviously, there are several different ways in which a transition group can be nice.
For origamis, the transition group only consists of translations. Since it does not matter
if it is the full translation subgroup Z2, we generalise in the following way: We consider
the projection onto the first component of D12 n Z2. In Example 7.3.6, this projection
is trivial for the first net and 〈rm〉 for the second one.
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Remark 7.3.7. Let H be the hexagonal lattice surface and ρ a net with transition group
T . For any automorphism α ∈ Aut(H), the transition group of α ◦ ρ is αTα−1.

Remark 7.3.7 shows that the projection onto the first component only has to be anal-
ysed up to conjugation. For simplicity, we focus our attention on normal subgroups.

Remark 7.3.8. The normal subgroup lattice of D12 has the following form:

1

〈r3〉 ∼= C2

〈r2〉 ∼= C3

〈r〉 ∼= C6 〈r2,m〉 ∼= S3 〈r2,mr〉 ∼= S3

D12

We are interested in relating possible transition groups with combinatorial properties
of the surface. This is only possible if we find properties that interact nicely with the
automorphism group. We consider the following properties:

• Face–2–colouring from Definition 3.3.2. It is a map F → {1, 2}.

• Orientability from Definition 5.3.5 and dual orientability from Definition 5.3.6.
Both are maps C → {±1}.

• RRR–colouring from Definition 3.3.3. It is a map E → {1, 2, 3}.

All of these structures are uniquely determined if they are defined on one face. Thus,
if we find an automorphism that preserves this structure on one face, it preserves the
structure on all faces. We start by understanding which automorphisms preserve which
structure.

Remark 7.3.9. Let H be the hexagonal lattice surface. It has a face–2–colouring via
{p, p+0, p++} 7→ 1 and {p, p++, p0+} 7→ 2. An α ∈ Aut(H) preserves this face–2–
colouring if and only if α ∈ 〈r2,m〉n Z2.

Proof. α = (M, t) ∈ D12 n Z2 preserves the face–2–colouring if and only if α maps the
face {p, p+0, p++} to a face of the form {q, q+0, q++}.

By Remark 7.1.5, M = rkm or M = rk with 0 ≤ k ≤ 5. From the proof of Lemma
7.1.4, we obtain that the action of r swaps the two face types, while the action of m
leaves them invariant. Thus, k has to be even.
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Remark 7.3.10. Let H be the hexagonal lattice surface. It is orientable and α ∈ Aut(H)
preserves the orientability if and only if α ∈ 〈r〉n Z2.

Proof. We describe the orientation of H by 3–cycles of vertices (a local orientation map),
according to Definition 5.3.2:

{p, p+0, p++} 7→ (p, p+0, p++) {p, p++, p0+} 7→ (p, p++, p0+)

α = (M, t) ∈ D12 n Z2 preserves the orientability if and only if α preserves the local
orientation map. We check the generators r and m. From the proof of Lemma 7.1.4, we
obtain

r.(p, p+0, p++) = (rp, (rp)++, (rp)0+) m.(p, p+0, p++) = (mp, (mp)0−, (mp)−−)
r.(p, p++, p0+) = (rp, (rp)0+, (rp)−0) m.(p, p++, p0+) = (mp, (mp)−−, (mp)−0).

The action of r preserves the orientation, the action of m inverses it. Thus, M ∈
〈r,m2〉 = 〈r〉.

Remark 7.3.11. Let H be the hexagonal lattice surface. It is dual orientable and α ∈
Aut(H) preserves the dual orientability if and only if α ∈ 〈r2,mr〉n Z2.

Proof. We describe the dual orientation of H by 3–cycles of vertices (a local orientation
map), according to Definition 5.3.3:

{p, p+0, p++} 7→ (p, p+0, p++) {p, p++, p0+} 7→ (p, p0+, p++)

α = (M, t) ∈ D12 n Z2 preserves the orientability if and only if α preserves the local
orientation map. By Remark 7.1.5, M = rk or M = rkm with 0 ≤ k ≤ 5. We check the
generators r and m. From the proof of Lemma 7.1.4, we obtain

r.(p, p+0, p++) = (rp, (rp)++, (rp)0+) m.(p, p+0, p++) = (mp, (mp)0−, (mp)−−)
r.(p, p0+, p++) = (rp, (rp)−0, (rp)0+) m.(p, p0+, p++) = (mp, (mp)−0, (mp)−−).

Both r and m invert the dual orientation. Thus, we have

M ∈ {r0, r2, r4, rm, r3m, r5m} = 〈r2, rm〉.

The hexagonal lattice surface has an RRR–colouring, illustrated here:
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Remark 7.3.12. Let H = (V,E, F, η, ϕ) be the hexagonal lattice surface from Definition
7.1.2. The map c : E → {1, 2, 3} with

c({p, p+0}) := 1 c({p, p++}) := 2 c({p, p0+}) := 3

is an RRR–colouring of H. An automorphism α ∈ Aut(H) preserves this colouring if
and only if α ∈ 〈r3〉n Z2.

Proof. Since each edge of H falls into exactly one of the three edge types, the map c is
well–defined. Clearly, the three edges of a face have different types, so c is a Grünbaum
colouring.

It remains to show that all local symmetries are of type R. Since Definition 3.3.4
is formulated for twisted polygonal complexes, we need to transfer H into a twisted
polygonal complex (V,E, F,C, λ, σ0, σ1,∼) with the functor TwistPoly from Definition
2.5.13.

Consider the edge {p, p+0} with p ∈ V . Two ∼–equivalent chambers containing this
edge are

(p, {p, p+0}, {p, p+0, p++}) (p, {p, p+0}, {p, p+0, p0−}).

Applying σ1 leads to the chambers

(p, {p, p++}, {p, p+0, p++}) (p, {p, p0−}, {p, p+0, p0−}).

Clearly, the edges {p, p++} and {p, p0−} have different images under cE .
The arguments for the other edge types are analogous.
It remains to show that α = (M, t) ∈ D12 n Z2 preserves this colouring if and only if

M ∈ 〈r3〉. By Remark 7.1.5, M = rkm or M = rk with 0 ≤ k ≤ 5. We consider the
proof of Lemma 7.1.4 to understand the action of r and m on the edges. The element r
induces a 3–cycle on the edge types, the element m exchanges two types while leaving
the third one fixed. Thus, the case M = rk is possible if and only if k ∈ {0, 3}. The
case M = rkm is not possible, since the single type fixed by m also has to be fixed by
rk. But this is only possible if rk fixes all types.

For convenience, we give these properties a name.

Definition 7.3.13. We call face–2–colourability, orientability, dual orientability, and
RRR–colourability heritable properties.

Heritable properties are special since they can be “inherited” from the hexagonal
lattice surface to twisted triangular surfaces with specific nets.

Theorem 7.3.14. Let S be a twisted triangular surface and H the hexagonal lattice
surface.

1. If S has a net whose transition group preserves a heritable property of H, then S
also has this property.
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2. If S has a heritable property, there exists a net of S whose transition group pre-
serves this property of H.

Proof. Start with the first claim: We define the corresponding structure on (the faces
of) S such that it is compatible with the structure of the net (in H). Then, we have to
check whether this definition is compatible along adjacent faces of S. Pick two adjacent
faces in S and let f and g be the corresponding faces in H. There is an element of the
transition group that maps f to an adjacent face of g (Remark 7.3.4). By assumption,
the structure of f is preserved under this map. Thus, the compatibility follows from the
compatibility relation in H.

Conversely, assume S has a heritable structure. Since H also has this structure, we
define the map ρ of a net of S (compare Definition 7.3.5) in such a way that the structure
is preserved. Then, all transition maps have to map the faces of H in such a way as to
preserve the structure. This implies already that each such transition map preserves the
full heritable property of H.

With Theorem 7.3.14 in hand, we can associate a property to each normal subgroup
of D12. The result is depicted in Figure 7.1. For convenience, we define the special case

1
hexagonal origami

〈r3〉 ∼= C2
RRR–colourable

〈r2〉 ∼= C3
orientable, face–2–colourable

〈r〉 ∼= C6
orientable

〈r2,m〉 ∼= S3
face–2–colourable

〈r2, rm〉 ∼= S3
dual orientable

D12

Figure 7.1: The normal subgroup lattice of D12 as a property lattice.

from the start of Section 7.3.
Definition 7.3.15. A twisted triangular surface is called hexagonal origami if it has
a net whose transition group only consists of translations.

Figure 7.1 depicts a property lattice, a lattice whose elements are different properties.
We recall the definition of a lattice (longer treatments can be found in [20] and [26]):
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Definition 7.3.16. A lattice (M,≤) consists of a set M and a binary relation ≤ on
M , such that:

1. reflexivity: m ≤ m for all m ∈M .

2. transitivity: x ≤ y and y ≤ z imply x ≤ z for all x, y, z ∈M .

3. antisymmetry: x ≤ y and y ≤ x imply x = y for all x, y ∈M .

4. joins exist: For x, y ∈M , there is a unique element in M , called x∨ y (or join)
such that
• x ≤ x ∨ y and y ≤ x ∨ y.
• Any z ∈M with x ≤ z and y ≤ z satisfies x ∨ y ≤ z.

5. meets exist: For x, y ∈M , there is a unique element in M , called x∧y (or meet)
such that
• x ∧ y ≤ x and x ∧ y ≤ y.
• Any z ∈M with z ≤ x and z ≤ y satisfies z ≤ x ∧ y.

A lattice becomes a property lattice if we can associate a property to each of its ele-
ments such that the logical relations of the properties correspond to the lattice structure.

Definition 7.3.17. A property lattice is a lattice (M,≤), where each m ∈ M corre-
sponds to a boolean property of a twisted triangular surface, such that for every twisted
polygonal surface S holds:

1. If S has the property of an m ∈M , it also has the property of n ∈M if m ≤ n.

2. If S has the properties of m ∈ M and n ∈ M , it also has the properties of their
meet m ∧ n.

Now, we can formally prove that Figure 7.1 depicts a property lattice.

Lemma 7.3.18. The normal subgroup lattice of D12, together with the properties shown
in Figure 7.1, is a property lattice.

Proof. For a twisted triangular surface S, Theorem 7.3.14 connects properties of S and
whether there exists a net whose transition group lies in a certain subgroup of Aut(H).

In Remark 7.3.10, Remark 7.3.9, Remark 7.3.11, and Remark 7.3.12, we show specif-
ically which properties correspond to which normal subgroups.

Since all of these were formulated as “α ∈ U”, for a subgroup U ≤ Aut(H), the first
requirement of Definition 7.3.17 is satisfied.

For the second one, assume that S has two properties. Then, we can apply Theorem
7.3.14 to the combination of the corresponding structures. This gives a group intersection
in Aut(H) since we have to compute which automorphisms preserve both structures in
H.
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7.3.1 Extended property lattice
In Section 7.3, we used nets with certain properties to relate different properties of
twisted triangular surfaces with each other. This culminated in the construction of the
property lattice of Figure 7.1.

In this subsection, we extend this property lattice by adding MMM–colourability
from Definition 3.3.3. The extended property lattice is depicted in Figure 7.2.

RRR–colourable
face–2–colourable

RRR–colourable

orientable
face–2–colourable

orientable face–2–colourable dual orientable

true

MMM–colourable
face–2–colourable

MMM–colourable

MMM–colourable
RRR–colourable

Figure 7.2: Extended property lattice

To prove that Figure 7.2 depicts a property lattice, we need to show the connection
between MMM–colourings and dual orientations.

Lemma 7.3.19. An MMM–colourable twisted triangular surface is dual orientable.

Proof. Let S = (V,E, F,C, λ, σ0, σ1,∼) be the twisted triangular surface and cE : E →
{1, 2, 3} the MMM–colouring. Define a map

s : C → {±1} c 7→
{

+1 cE(λ1(c)) + 1 = cE(λ1(σ1(c))) mod 3
−1 cE(λ1(c))− 1 = cE(λ1(σ1(c))) mod 3
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We show that s is a local chamber colouring (Definition 5.3.4). Clearly, s(c) 6= s(σ1(c))
for all chambers c ∈ C. Since S has a Grünbaum colouring, λ1(σ1(c)) 6= λ1(σ1σ0(c)).
Since λ1(c) = λ1(σ0(c)), this implies s(c) 6= s(σ0(c)).

It remains to show that 2–adjacent chambers have equal s–value. Assume c1 ∼ c2 are
different chambers. Thus, λ1(c1) = λ1(c2). Since cE is an MMM–colouring, Definition
3.3.4 gives cE(λ1(σ1(c1))) = cE(λ1(σ1(c2))), which proves the claim.

Now, we can prove that Figure 7.2 depicts a property lattice.

Lemma 7.3.20. The property lattice depicted in Figure 7.2 is a property lattice.

Proof. We check the conditions of Definition 7.3.17. Let S be a twisted triangular
surface. We start with the first condition:

• Assume S has an MMM–colouring. We have to show that S is dual orientable.
This follows from Lemma 7.3.19.

• If S has an MMM–colouring and an RRR–colouring, it is also dual orientable
(Lemma 7.3.19). Thus, by Lemma 7.3.18, it is also a hexagonal origami and face–
2–colourable.

Consider the second condition now. In comparison to the property lattice of Figure
7.1, we only have to consider MMM–colourable surfaces with an additional property.
The only non–trivial newly available meet is a twisted triangular surface that is both
MMM–colourable and orientable. By Lemma 7.3.19, it is also dual orientable. By
Lemma 7.3.18, S is face–2–colourable.

The lattice in Figure 7.2 has a mirror symmetry. This is not a coincidence. In Chapter
9, we introduce the notion of geodesic duality. One can show the following statements
for a twisted triangular surface S:

1. S is orientable if and only if its dual is dual orientable.

2. S is RRR–colourable if and only if its dual is MMM–colourable.

3. S is face–2–colourable if and only if its dual is face–2–colourable.

Thus, the mirror symmetry apparent in Figure 7.2 reflects a duality within twisted
triangular surfaces.
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8 Invariants of simplicial surfaces with
single boundary

In the analysis of simplicial surfaces, a common obstacle is the sheer variance of surfaces.
Many of them look very similar, if one chooses to eschew a few details, yet show very
different behaviour. This apparent lack of structure hinders many naive approaches to
understand and classify them properly.

The goal of this chapter is the description of a global structure within simplicial
surfaces, i. e. a structure that remains invariant under local modifications of the surface.
This structure should give a better perspective on the nature of simplicial surfaces.

In Section 8.1, we analyse a particular local modification that serves as motivation for
developing the general theory of global invariants. To define these global invariants, we
define the infinite regular extension in Section 8.2. In Section 8.3, we construct several
infinite regular extensions for different surfaces and analyse the different invariants that
are induced by them. These invariants rely on the classification of possible infinite regular
extensions, which mirrors the classification of nanotubes and nanocones (compare [17]
and [18] for more details).

8.1 Motivation: Vertex splitting
It is known from [57] that all spherical triangulations can be obtained from the tetrahe-
dron by successively inserting two triangles (called vertex splits in the literature, compare
[35, D22, Subsection 7.8.3]). There is a rich literature surrounding this topic. For ex-
ample, [9] proves a similar result for triangulations of the projective plane.

Vertex splits can be described as follows:

1. Choose two edges that are incident to the same vertex.

2. Cut along these edges. This leaves a hole with four boundary edges.

3. Insert two triangles into the hole.

We can illustrate a vertex split as in Figure 8.1. It is not immediately clear how
to apply these steps on vertex–faithful simplicial surfaces. In particular, the cutting
operation is unclear.

Definition 8.1.1. Let S = (V,E, F, η, ϕ) be a simplicial surface and e1, ek+1 two edges
with η(e1) = {v1, v2} and η(ek+1) = {v2, v3}, such that v2 is an inner vertex with
umbrella–path (e, f1, e2, . . . , ek, fk, ek+1, fk+1, ek+2, . . . , en, fn, e).

The vertex split of S along {e1, ek+1} is the simplicial surface (V̄ , Ē, F̄ , η̄, ϕ̄) with
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en

e1

e2 ek

ek+1

ek+2
fn

f1 fk

fk+1

v1 v2
v3 7→

e2

en

ek

ek+2

ed
1

eu
1

ed
k+1

eu
k+1

em

fn

g1

f1

g2

fk+1

fk

v1

vu2

v3

vd2

Figure 8.1: Vertex split

• V̄ := V \{v2} ∪ {vu2 , vd2},

• Ē := E\{e1, ek+1} ∪ {ed1, eu1 , edk+1, e
u
k+1, e

m},

• F̄ := F ∪ {g1, g2},

•

η̄ : Ē → Pot2(V̄ ), x 7→



{vu2 , vd2} x = em

{v1, v
u
2} x = eu1

{v1, v
d
2} x = ed1

{v3, v
u
2} x = euk+1

{v3, v
d
2} x = edk+1

η(x)\{v2} ∪ {vu2} x ∈ {ek+2, . . . , en}
η(x)\{v2} ∪ {vd2} x ∈ {e2, . . . , ek}
η(x) otherwise,

• and

ϕ̄ : F̄ → Pot3(Ē), x 7→



{eu1 , ed1, em} x = g1

{euk+1, e
d
k+1, e

m, } x = g2

ϕ(x)\{e1} ∪ {eu1} x = fn

ϕ(x)\{e1} ∪ {ed1} x = f1

ϕ(x)\{ek+1} ∪ {euk+1} x = fk+1

ϕ(x)\{ek+1} ∪ {edk+1} x = fk

ϕ(x) otherwise.

Well–defined. We show first that (V̄ , Ē, F̄ , η̄, ϕ̄) is a triangular complex, using Definition
2.5.2.
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1. For the face g1, we have the sequence (v1, e
u
1 , v

u
2 , e

m, vd2 , e
d
1). For the face g2, we

have the sequence (v3, e
u
k+1, v

u
2 , e

m, vd2 , e
d
k+1).

Consider a face among {f1, . . . , fk}. In its sequence of S, perform the replacements

e1 7→ ed1, ek+1 7→ edk+1, v2 7→ vd2 .

This produces a valid sequences since

η(e1) = {v1, v2} implies η̄(ed1) = {v1, v
d
2}

η(ek+1) = {v2, v3} implies η̄(edk+1) = {vd2 , v3}
η(ej) = {v, v2} implies η̄(ej) = {v, vd2} for all 2 ≤ j ≤ k.

A similar replacement works for the faces in {fk+1, . . . , fn}.

2. The vertices vd2 and vu2 are incident to the edge em. All other vertices are incident
to an edge in E that also lies in Ē.

3. The edge em is incident to the face g1, the edge eu1 lies in the face fk, and so on.

Next, we show that (V̄ , Ē, F̄ , η̄, ϕ̄) actually is a simplicial complex, according to Defini-
tion 2.5.27.

1. For all edges not in {eu1 , ed1, euk+1, e
d
k+1, e

m} there is nothing to show. For the edges
in this set, it follows from inspection of ϕ̄ that they are inner edges.

2. Clearly, only the vertices in {v1, v
u
2 , v

d
2 , v3} have to be checked. The maximal

umbrella of vu2 is (eu1 , g1, e
m, g2, e

u
k+1, fk+1, ek+2, . . . , fn, eu). The maximal umbrella

of vd2 is (ed1, f1, e2, . . . , ek, fk, e
d
k+1, g2, e

m, g1, e
d
1). In the maximal umbrella around

v1 in S, we replace the subsequence (f1, e1, fn) by (f1, e
d
1, g1, e

u
1 , fn). Analogously,

for v3 we replace (fk, ek+1, fk+1) by (fk, edk+1, g2, e
u
k+1, fk+1).

Remark 8.1.2. Let S be a vertex–faithful simplicial surface. Then, each vertex split of
S is also vertex–faithful.

Proof. We use the notation from Definition 8.1.1. Clearly, η̄ is injective if η is injective.
Next, we need to consider η̄]ϕ̄:

η̄]ϕ̄ : F̄ → Pot3(V̄ ) x 7→



{v1, v
u
2 , v

d
2} x = g1

{v3, v
u
2 , v

d
2} x = g2

ϕ(x)\{v2} ∪ {vd2} x ∈ {f1, . . . , fk}
ϕ(x)\{v2} ∪ {vu2} x ∈ {fk+1, . . . , fn}
ϕ(x) otherwise

Clearly, this map is injective if η]ϕ is.

Vertex splits are just one kind of local modifications. While we do not define local
modifications in detail, we can give a rough intuition about them. We can interpret a
vertex split as follows:
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1. Start with a simplicial surface.

2. Take a subsurface whose topological realisation is a disc.

3. Replace this subsurface by a different subsurface, whose topological realisation is
also a disc.

Here, the replacing subsurface is crucial. If we choose a different replacement, we obtain
a different local modification. Right now, we have no need to define local modifications
in that level of generality, so we continue to analyse vertex splits.

To approach this problem, we ask whether we obtain more fine–grained information
if the possible triangulations are restricted, e. g. by restricting the possible degrees.

Definition 8.1.3. A simplicial surface is called 456–surface if

1. The degree of each inner vertex lies in {4, 5, 6}.

2. The degree of each boundary vertex is smaller than 6.

At this point, it becomes interesting to know how vertex splits change the vertex
degrees.

Remark 8.1.4. Let S be a vertex–faithful simplicial surface and e1, ek+1 be two edges
with η(e1) = {v1, v2} and η(ek+1) = {v2, v3}. In the notation of definition 8.1.1 the
vertex split has the following degrees:

• The degree of v1 and v3 increased by 1.

• The degree of vu2 is n− k + 2.

• The degree of vd2 is k + 2.

Proof. The claims follow from the definition of ϕ̄.

Since 456–surfaces can only have the degrees 4, 5, and 6, the possible vertex splits are
restricted.

Corollary 8.1.5. Let S be a vertex–faithful 456–surface and e, f be two edges with
η(e) = {a, b} and η(f) = {b, c}. Then, the vertex split is a 456–surface if and only if

1. The degree of a and c is not 6.

2. The edges e and f are not incident to a common face.

Proof. We use the notation from Definition 8.1.1 and the degree characterisation from
Remark 8.1.4. We have n ∈ {4, 5, 6} and 1 ≤ k < n. Therefore, we only have to prevent
k ∈ {1, n − 1}. These cases appear if and only if e and f are incident to a common
face.
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In particular, the only possible vertex splits happen between two singularities (recall
Definition 4.1.1) with distance two.

This implies the analysis of a simplicial surface can proceed locally. If it is impossible
that two vertices can interact (even indirectly) by vertex splits, then we can analyse
each of them individually. To analyse this, we introduce neighbours, the set of adjacent
vertices of a given vertex.

Definition 8.1.6. Let (V,E, F, η, ϕ) be a polygonal complex and v ∈ V a vertex. The
neighbours of v are

N(v) := {w ∈ V | ∃e ∈ E with η(e) = {v, w}}.

With the neighbour–concept, we can reformulate Corollary 8.1.5.

Corollary 8.1.7. Let (V,E, F, η, ϕ) be a vertex–faithful 456–surface and a, b two singu-
larities. Then, there can be a vertex split between them if and only if

1. a 6= b.

2. There is no edge e ∈ E with η(e) = {a, b}.

3. N(a) ∩N(b) 6= ∅.

Since vertex splits can only happen between singularities that are quite close to each
other, it is natural to restrict the surface to these neighbourhoods.

Definition 8.1.8. Let S = (V,E, F, η, ϕ) be a vertex–faithful 456–surface. A defect
neighbourhood is a minimal subset N ⊆ V such that for all singularities v holds:

1. v ∈ N implies N(v) ⊆ N .

2. If there is a w ∈ N and an e ∈ E with η(e) = {v, w}, then v ∈ N .

Since defect neighbourhoods should simplify the analysis, they should be disjoint. The
next lemma shows that this is true.

Lemma 8.1.9. Let S be a vertex–faithful 456–surface and N be a defect neighbour-
hood. For any singularity v ∈ N holds: The minimal (with respect to inclusion) defect
neighbourhood that contains v is equal to N .

Proof. The minimal defect neighbourhood containing v is unique:

• v and N(v) have to be contained.

• Whenever there are two defects with distance 2, one lying in the constructed
neighbourhood and one outside, both (together with their neighbours) are added.

This defines a construction graph: The vertices are the singularities in N and two singu-
larities are connected by an edge if their distance is at most 2. The above construction
of the defect neighbourhood follows a connected component of this graph. Since this is
independent from the start, the claim follows.
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Corollary 8.1.10. Let S be a vertex–faithful 456–surface and N1, N2 two defect neigh-
bourhoods. Then N1 = N2 or N1 ∩N2 = ∅.

Proof. Assume v ∈ N1 ∩N2. If v is a singularity, Lemma 8.1.9 shows N1 = N2.
Otherwise, v is non–singular. Then, there exist singularities s1 ∈ N1 and s2 ∈ N2,

together with edges e1 and e2 satisfying η(ei) = {v, si}. By Definition 8.1.8, this implies
s2 ∈ N1 and s1 ∈ N2. An application of Lemma 8.1.9 shows N1 = N2.

Now we see the following structure:

• The vertex splits operate within defect neighbourhoods.

• The whole surface is determined by its defect neighbourhoods and the connections
between them.

This gives two research questions:

• What happens within defect neighbourhoods? How can the neighbourhood be
modified by vertex splits?

• How can the surface be recombined from its defect neighbourhoods?

In this chapter, we give a partial solution to the first question.

8.2 Infinite regular extension
In the previous Section 8.1, we introduced the operation of vertex splitting and we
analysed the local behaviour of this operation in the case of restricted vertex degrees.

In this section, we consider simplicial surfaces with exactly one boundary component.
We can interpret such a surface as the simplest case of defect neighbourhoods from
Section 8.1. We then construct a larger surface from it by extending its boundary with
the methods from Chapter 6. This culminates in a general construction procedure for
an infinite extension of the starting surface.

The main goal of this section is to define the infinite extension process and to prove the
uniqueness of the resulting surface. To build an intuition for these extensions, consider
the following simplicial surface:
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If we interpret this surface as a defect neighbourhood, every vertex on the boundary has
degree 6 in the larger surface. Therefore, an extension at the marked vertex would need
to add three faces:

Now, the extension along the boundary vertex next to it only adds two faces:

Naturally, this construction can be repeated. So we could ask whether we can continue
this construction indefinitely and, if so, whether the resulting surface is unique.

If we allow the extensions to become more complicated than discs or planes, they do
not have to be unique, as the following example shows.

Example 8.2.1. Consider the simplicial surface

It can be extended into an infinite plane (which we show later in Theorem 8.3.9), but
it can also be extended into a projective plane (with a finite number of triangles) by
identifying opposite vertices.
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Thus, our goal in this section is to define a construction procedure that gives a unique
infinite extension, together with a criterion that tells us whether this is possible.

A naive approach would be to extend a random boundary vertex at each step. Unfor-
tunately, this naive strategy has some pitfalls.

1. At each step in the construction, we should have a valid partial surface. If we
notice later that some vertices assumed to be different are actually identical, this
might wreak havoc on the construction because of conflicting requirements.
We will conceptualise this by the requirement that there is a twilight morphism
from the partial surface to the extended surface.

2. If we are not careful in our choice of boundary vertices, we might not be able to
avoid to construct different vertices that turn out to be identical later on. For
example, start with any disc triangulation. Then construct a sequence of triangles
on both sides, like tentacles growing from the original disc. Some of the triangles
on these tentacles might be shown to be equal later on but this is almost impossible
to tell beforehand.
To avoid this situation, we will essentially “ban tentacles” by requiring that the
boundary of all partial surfaces is homogeneous enough to avoid these problems.

The construction relies heavily on the theory of cyclic sequences that we developed
in Subsection 3.4.2. We restrict our attention to simplicial surfaces with exactly one
connected boundary component (SB–surfaces from Definition 3.4.17). Theoretically, we
could extend this construction to an arbitrary number of components (by applying the
construction to each component individually), but we do not pursue this direction in
this thesis.

We can avoid “too concave” boundaries by requiring the SB–surfaces to be growth–
controlled (compare Definition 4.2.4).

With these definitions, we can start with the construction. Since the infinite regular
extension is constructed “in the limit”, we define finite extensions first.

Definition 8.2.2. Let (S, d̂egS) be a growth–controlled extended SB–surface. Then,
(T, d̂egT , (v)) is a vertex extension of S if

1. (T, d̂egT ) is a growth–controlled extended SB–surface.

2. v is a boundary vertex of T .

3. T−v = S and d̂eg
−v
T = d̂egS.

Furthermore, (T, d̂egT , (v1, . . . , vk)) is a vertex extension of S if there is a vertex
extension (U, d̂egU , (v1, . . . , vk−1)) of S, such that (T, d̂egT , (vk)) is a vertex extension of
(U, d̂egU ).

With finite extensions in place, we can give the set of all vertex extensions a categorical
structure, in order to identify the infinite regular extension as a limit in this category.
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Definition 8.2.3. Let (S, d̂egS) be a growth–controlled extended SB–surface. Its regular
extension category is defined as follows:

• The objects are vertex extensions (T, d̂egT , (v1, . . . , vk)) of S such that the induced
extended twilight morphism µT : (S, d̂egS)→ (T, d̂egT ) is hexagonal.

• The morphisms between (T, d̂egT , (v1, . . . , vk)) and (U, d̂egU , (w1, . . . , wl)) are ex-
tended twilight morphisms ψ : (T, d̂egT )→ (U, d̂egU ) such that ψ ◦ µT = µU .

If there is a strongly connected, vertex–faithful, closed simplicial surface S∞ such that

1. There exists a twilight morphism ρ : S → S∞

2. For each object (T, d̂egT , µ) there is a twilight morphism ρT : T → S∞ such that
ρT ◦ µ = ρ,

then S∞ is called an infinite regular extension of S and denoted by lim←−S.

Ideally, we could show that an infinite regular extension always exists. Unfortunately,
showing existence in general is quite difficult (it is much easier if we are restricted to
special cases), so we postpone this until Section 8.3.

In this section, we prove the uniqueness of the infinite regular extension. To do so, we
start with classifying the different possible vertex extensions with one vertex.

Remark 8.2.4. Let (S, d̂eg) be a growth–controlled extended SB–surface and v a bound-
ary vertex of S. If (S−v, d̂eg

−v
) is a growth–controlled extended SB–surface, degS(v) ≤ 3.

Proof. If we consider the construction of (S−v, d̂eg
−v

) from Lemma 6.1.8, we observe
that the d̂eg

−v
–sequence contains deg(v)− 1 many 2’s. Since there can be at most three

2’s next to each other (by growth–control), the degree of v is at most 3.

Although the surface S can have a very complicated topology, the constructed vertex
extensions are pretty simple. They can even be mapped into the plane.

Definition 8.2.5. Let (S, d̂eg) be an extended SB–surface and (T, d̂egT , (v1, . . . , vk)) a
vertex–extension with twilight morphism µ : S → T . Let

• V be the set of vertices in T that do not lie in the image of µ or are the image of
a boundary vertex of S.

• E be the set of edges in T that do not lie in the image of µ or are the image of a
boundary edge in S.

• F be the set of faces in T that do not lie in the image of µ.

• η : E → Pot2(V ) be the restriction of the map η from T .

• ϕ : F → Pot3(E) be the restriction of the map ϕ from T .
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A continuous embedding of T\S consists of

1. An injective map ιV : V → R2,

2. A map ιE that associates to each e ∈ E a continuous path p : [0, 1]→ R2 such that
{p(0), p(1)} = {ιV (v) | v ∈ η(e)},

fulfilling

1. The paths ιE(e) do not intersect, except at the end–points (and there, only if and
only if the corresponding edges have a common vertex).

2. For each f ∈ F the path ιE(e) for e ∈ ϕ(e) forms a Jordan–curve such that the
bounded component of the complement contains no more elements from ιV or ιE.

3. The boundary ∂S is mapped to a Jordan–curve whose bounded component contains
no elements from ιV or ιE.

Lemma 8.2.6. Any vertex–extension of (S, d̂eg) has a continuous embedding.

Proof. We map ∂S to the circle of radius 1. Then, we construct the remaining map
inductively.

We always start from the following position: The boundary of ∂S is mapped to a
Jordan–curve in R2 and the unbounded component of the complement is empty, i. . it
does neither contain a ιV (v) for v ∈ V , nor a point on a path ιE(e) for e ∈ E. To
construct the embedding of S+v, we proceed as follows:

1. Pick any vertex in the unbounded component as the image ιV (v)

2. Pick a face f incident to v. We can find two paths from ιV (v) to the corresponding
end–points. These paths are the paths ιE(e) for the edges e ∈ E that are incident
to both v and f .
We extend ∂S by these paths into a Jordan–curve such that the unbounded com-
plement remains empty.

3. Pick a face adjacent to one already constructed. Then, two edges of this face
already have an image under ιE . Thus, the vertices incident to the final edge lie
on a Jordan–curve whose unbounded complement component is empty.
We pick any path in that component connecting the two vertices as the image of
the final edge. We can extend the previous Jordan–curve to a new one whose
unbounded complement component is empty.
We repeat this process until all faces incident to v are constructed.

In this fashion, we can construct an arbitrary extension.

Remark 8.2.7. The only boundary edges of the continuous embedding are the images
of ∂S and ∂T .
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We apply the continuous embedding to construct closed paths within the vertex ex-
tensions.

Lemma 8.2.8. Let (S, d̂eg) be an extended SB–surface and (T, d̂egT , (u1, . . . , um)) an
object of the regular extension category, with hexagonal extended twilight morphism
(µV , µE , µF ) : (S, d̂eg)→ (T, d̂egT ).

Let v1, v2 ∈ ∂S and assume there is a non–intersecting path

(µV (v1), w1, w2, . . . , wk, µV (v2))

in T such that wi does not lie in the image of µV (for all 1 ≤ i ≤ k). Then, there exists
a path (v1, s1, . . . , sn, v2) in ∂S, such that

(µV (v1), µV (s1), . . . , µV (sn), µV (v2), wk, . . . , w1, µV (v1))

is a cyclic intersection–free path in T , whose inner vertices all have degree 6 and with
deg(si) = d̂egS(si).

Proof. By Lemma 8.2.6, there is a continuous embedding. The path

(µV (v1), w1, w2, . . . , wk, µV (v2))

becomes a continuous path between ιV (v1) and ιV (v2) (with notation from Definition
8.2.5).

Consider the paths on ∂S between ιV (v1) and ιV (v2). Both of these can be combined
with the path in T to obtain a Jordan–curve that bounds a disc. By [69, Corollary 1.2],
these three paths separate the plane into three faces, whose boundaries are formed of
two paths each. By Definition 8.2.5, one of these bounded faces is formed from both
paths on ∂S. Thus, the other bounded face has the path T and exactly one path in ∂S
as boundary.

All vertices within this Jordan–curve have degree 6 by construction of the regular
extension category.

Next, we prove a technical lemma that is crucial to prove the uniqueness of the infinite
regular extension.

Lemma 8.2.9. Let (S, d̂egS) be a growth–controlled extended SB–surface, (T, d̂egT ) an
extended vertex–faithful simplicial surface, and µ = (µV , µE , µF ) : (S, d̂egS)→ (T, d̂egT )
an injective extended hexagonal polygonal morphism.

Let v be a regular vertex of T that does not lie in the image of µV . Let w1 and w2
be two vertices from the link LkT (v) that lie in the image of µV . Then, the image of µ
contains a vertex–edge–path from w1 to w2 that has at most length 3.

Proof. Since v is a regular vertex, its maximal umbrella is contained in a hexagon. We
prove the claim by contradiction and consider the three possible relative positions of w1
and w2.

1. w1 and w2 have distance 1 in LkT (v).
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w2w1

v

If the edge between w1 and w2 in LkT (v) lies in the image of µE , the claim is true.

Otherwise, we can combine the vertex path (w1, v, w2) with (w1, s1, . . . , sn, w2),
the image of a boundary path in S, to obtain a closed path in T that only encircles
vertices with degree 6 (µ is hexagonal).

w2w1

v

s1 sn

. . .

We compute the inner degrees of this polygon. By construction, deg(si) = d̂egS(si)
and deg(v) = 1. From Lemma 4.1.5, we obtain

6 =
n∑
i=1

(3− d̂egS(si)) + (3− 1) + (3− deg(w1)) + (3− deg(w2)),

which can be rewritten as
∑n
i=1(3− d̂egS(si)) = deg(w1) + deg(w2)− 2.

Since the edge between w1 and w2 is not part of the path, we have deg(wi) > 1.
If deg(w1) = deg(w2) = 2, the path would be (w1, s1, w2, v, w1) with d̂egS(s1) = 1,
which is impossible since S is growth–controlled (compare Definition 4.2.4). Thus,
deg(w1) + deg(w2) ≥ 5, implying

∑n
i=1(3− d̂egS(si)) ≥ 3, which is a contradiction

to S being growth–controlled.

2. w1 and w2 have distance 2 in LkT (v):

w2w1

v

w̄

Since w1 and w2 are both images of boundary vertices in S, there is a path in
the boundary of S, whose image is the path (w1, s1, s2, . . . , sn, w2), such that
(w1, s1, . . . , sn, w2, v, w1) is a closed path in T , where all encircled vertices have
degree 6.
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w2w1

v

w̄
s1 sn

. . .

With Lemma 4.1.5, we obtain like in the previous case

6 =
n∑
i=1

(3− d̂egS(si)) + (3− 2) + (3− deg(w1)) + (3− deg(w2)).

This implies
∑n
i=1(3− d̂egS(si)) = deg(w1) + deg(w2)− 1.

Since S is growth–controlled, this sum is at most 2. Thus, deg(w1) + deg(w2) ≤ 3.
If both degrees are 1, S contains the boundary path (w1, w̄, w2).
If deg(w1) = 2 and deg(w2) = 1, then we have the path (w1, s1, w̄, w2) with
d̂egS(s1) = 1, contradicting S being growth–controlled.

3. w1 and w2 have distance 3 in LkT (v):

w2w1
v

x1 x2

Like in the previous cases, a boundary path in S is mapped to (w1, s1, . . . , sn, w2)
by µ, such that (w1, s1, . . . , sn, w2, v, w1) is a closed path in T that only surrounds
vertices of degree 6.

w2w1
v

x1 x2s1 sn

. . .

From Lemma 4.1.5 we obtain (like in the previous cases)

6 =
n∑
i=1

(3− d̂egS(si)) + (3− 3) + (3− deg(w1)) + (3− deg(w2)).

This gives
∑n
i=1(3− d̂egS(si)) = deg(w1) + deg(w2). Since S is growth–controlled,

this sum is at most 2. Since deg(wi) ≥ 1, this implies deg(wi) = 1.
Then, the two vertices x1 and x2 have to be contained in the image of µ. By the
first case of this lemma, this implies that the edge connecting them also has to be
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contained in the image of S. Therefore, the path (w1, x1, x2, w2) lies in the image
of µ.

At this point, we can formulate the uniqueness lemma (for the finite case).

Lemma 8.2.10. Let (S, d̂egS) be a growth–controlled extended SB–surface.
Let (T, d̂egT , (v1, . . . , vk)) and (U, d̂egU , (w)) be objects in the regular extension cate-

gory of (S, d̂egS) with hexagonal extended twilight morphisms

µT : (S, d̂egS)→ (T, d̂egT ) µU : (S, d̂egS)→ (U, d̂egU ).

If µTE ◦ (µUE)−1(e) is an inner edge of T for every edge in LkU (w), there is a unique
hexagonal extended twilight morphism ψ : (U, d̂egU )→ (T, d̂egT ) with ψ ◦ µU = µT .

Proof. Denote T = (V T , ET , F T , ηT , ϕT ) and U = (V U , EU , FU , ηU , ϕU ). We have an
extended twilight morphism (µTV , µTE , µTF ) : S → T and (µUV , µUE , µUF ) : S → U . Let
the maximal umbrella of w in U be (e0, f1, e1, . . . , fn, en) with n ≤ 3 by Remark 8.3.1.
Assume ϕU (fi) = {ei−1, ei, êi}, so êi are the edges of Lk(w). Let v̂i ∈ V S such that
ηU (êi) = {w, µUV (v̂i)}.

e1

e0 e2

ê1 ê2

f2f1

w

µUV (v̂0)

µUV (v̂1)

µUV (v̂2)

To fulfil ψ ◦ µU = µT , the morphism ψ has to have the following partial definition:

ψV : V U\{w} → V T v 7→ µTV ◦ (µUV )−1(v)
ψE : EU\{e0, e1, . . . , en} → ET e 7→ µTE ◦ (µUE)−1(e)
ψF : FU\{f1, . . . , fn} → F T f 7→ µTF ◦ (µUF )−1(f)

We have to show that ψ can be uniquely (and consistently) defined for the missing values.
This is easy for the faces {f1, . . . , fn}. They are incident to the edges êi ∈ EU . Since

µTE ◦ (µUE)−1(êi) are inner edges in T , there are unique faces f̄i to which we can map fi.

ψE(ê1) ψE(ê2)
f̄2f̄1µTV (v̂1)

µTV (v̂2)
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We have to show that f̄i−1 and f̄i are incident to the same edge. To do so, consider the
vertex µTV (v̂i) between them. Since both µU and µT are extended twilight morphisms,
we have

degT (µTV (v̂i)) + d̂egT (µTV (v̂i)) = degS(v̂i) + d̂egS(v̂i) = degU (µUV (v̂i)).

We know that degU (µUV (v̂i)) = degS(v̂i) + 2, so we can conclude that µTV (v̂i) is an inner
vertex of T and that f̄i−1 and f̄i are incident to the same edge. This defines ψE uniquely
for {e0, e1, . . . , en}. Furthermore, all faces f̄i (for 1 ≤ i ≤ n) are incident to a common
vertex, which has to be ψV (w).

It remains to prove that the polygonal morphism ψ is a polygonal shadow morphism,
according to Definition 2.7.8. We start by establishing that ψV is injective.

• Let v1, v2 ∈ V U\{w} with ψV (v1) = ψV (v2). This is equivalent to

µTV ◦ (µUV )−1(v1) = µTV ◦ (µUV )−1(v2).

Since µTV is injective (by Remark 2.3.4 and Lemma 2.7.9), this implies (µUV )−1(v1) =
(µUV )−1(v2), which implies v1 = v2 in turn.

• Let v ∈ V U\{w} and assume ψV (v) = ψV (w). Then, (µUV )−1(v) ∈ V S . In addition,

{ψV (w), µTV (v̂1), µTV (v̂2)} = (ηT]ϕT )(f)

for a face f ∈ F T . Since µTV is an injective polygonal shadow morphism,

{(µUV )−1(v), v̂1, v̂2} = (ηS]ϕS)(g)

for a face g ∈ FS . Since the edge (µUE)−1(ê1) is a boundary edge in S, the face g is
the only incident face. Since µTE ◦ (µUE)−1(ê1) is an inner edge in T , it is incident
to two faces, µTF (g) and f̄1. But since T is vertex–faithful, ψV (w) = ψV (v) implies
g = f̄1, which is a contradiction.

Let X ∈ Pot(V U ) and consider Y = {ψV (y) | y ∈ X}. Since ψV is injective, |X| = |Y |.
Thus, only the cases for |X| ∈ {1, 2, 3} are relevant.

1. |Y | = 1. Then, X = {v} for some v ∈ V U , since ψV is injective.

2. |Y | = 2. If w 6∈ X = {v1, v2}, we have Y = {µTV ◦ (µUV )−1(v1), µTV ◦ (µUV )−1(v2)}.
Since µT is a polygonal shadow morphism, there is an edge eS ∈ ES with ηS(eS) =
{(µUV )−1(v1), (µUV )−1(v2)}. Since µU is a polygonal morphism, there is an edge
eT ∈ ET with ηT (eT ) = {v1, v2}.
Otherwise, X = {w, v} for some v ∈ V U\{w}. If there is an edge in e ∈ ET

with ηT (e) = Y , consider the umbrella around ψV (w). Since µT is hexagonal, this
umbrella lies in a hexagon.
If ψV (v) 6∈ {µTV (v̂1), . . . , µTV (v̂n)}, the vertices ψV (v) and {µTV (v̂1), . . . , µTV (v̂n)} all
lie on the boundary of the hexagon.
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e
ψV (w)

µTV (v̂3)ψV (v)

µTV (v̂1) µTV (v̂2)

We apply Lemma 8.2.9 to ψ. It shows that there is a vertex–edge–path along the
boundary of the hexagon that connects ψV (v) to µTV (v̂i) and lies in the image of
ψ. Consider the pre–image of this path in U . All edges of this path lie in LkU (w).
By Remark 8.3.1, the link contains at most 4 vertices and 3 edges. Thus, v is
adjacent to µUV (v̂1) or µUV (v̂n). But this implies d̂egU (µUV (v̂1)) = 1, contradicting
the growth–control of U .

3. |Y | = 3. We argue similar to the second case that X = {w, v1, v2} for some
v1, v2 ∈ V U\{w} is the only case that is yet to prove. If Y consists of the vertices
of a face in T , all of its edges also lie in T . By the already proven second case, this
implies that {v1, v2}, {w, v1}, and {w, v2} are the vertices of certain edges in U .
Thus, v1, v2 ∈ {µUV (v̂0), µUV (v̂1), . . . , µUV (v̂n)}. Up to symmetry, we have these two
cases:
• If v1 = µUV (v̂i) with 0 < i < n, we have v2 ∈ {µUV (v̂i−1), µUV (v̂i+1)}, otherwise

the edge êi would be ramified.
• If v1 = µUV (v̂0) and v2 = µUV (v̂n), we deduce that w is an inner vertex of U

with degU (w) = n+ 1.
By Remark 8.3.1, n ≤ 3. But (U, d̂egU , (w)) is an object of the regular ex-
tension category, which implies that w is a regular vertex. This contradiction
proves the impossibility of this case.

With Lemma 8.2.10 in hand, we can show the uniqueness of the infinite regular ex-
tension.

Theorem 8.2.11. Let (S, d̂egS) be a growth–controlled extended SB–surface. Let T k =
(Tk, d̂egTk , Vk) be objects from the regular extension category, such that

1. There are morphisms µk : T k → T k+1, with the stipulation that T 0 := (S, d̂egS , ()).

2. For any k ∈ N, there is a K ∈ N such that all boundary edges of Tk are inner edges
in TK .

3. There exists a strongly connected, vertex–faithful, closed simplicial surface T∞ with
extended twilight morphisms from (Tk, d̂egTk) to (T∞) that commute with all µk.
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Then, T∞ is the infinite regular extension of (S, d̂egS).

Proof. Let (T, d̂egT , (v1, . . . , vl)) be any object from the regular extension category. This
gives the sequence

(S, d̂egS , ())→ ((((T−vl)−vl−1)...)−v2 , d̂egT1 , (v1))
→ . . .

→ (T−vl , d̂egTl−1 , (v1, . . . , vl−1))

→ (T, d̂egT , (v1, . . . , vl)).

By assumption, there is a K ∈ N such that all boundary edges of S are inner edges in
TK . We apply Lemma 8.2.10 to construct a morphism from the second sequence–term
to TK .

We repeat this argument, which leads to a morphism T → TL for some L ∈ N. From
there, it is easy to see that we end up in T∞.

8.3 Construction of infinite regular extension

In the previous Section 8.2, we introduced the concept of infinite regular extension and
showed its uniqueness in Theorem 8.2.11.

In this section, we turn to the actual construction of infinite regular extensions in
several cases. Since the regular extension category might not always exist, we start by
developing conditions that are necessary for existence.

Remark 8.3.1. Let (S, d̂eg) be a growth–controlled extended SB–surface. Then, the
total extended defect of (S, d̂eg) is at most 6χ.

Proof. From Corollary 4.2.9 we obtain∑
v∈VB

(3− d̂eg(v)) =
∑
v∈V

d̂ef(v)− 6χ.

Since (S, d̂eg) is growth–controlled, the sum on the left is at most 0. Thus,∑
v∈V

d̂ef(v) ≤ 6χ.

A crucial property in the regular extension category is growth–controlled. Since this
property only depends on the boundary of the surface, we define the boundary defect to
organise the behaviour of the vertex–extensions.

Definition 8.3.2. Let (S, d̂eg) be an extended SB–surface. Its boundary defect is∑
v∈VB

(3− d̂eg(v)).
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We employ the following construction strategy: First, we manually extend the trian-
gulation until we obtain a standard form for the boundary. Then, we combine it with
a generic infinite surface and use the uniqueness from Theorem 8.2.11 to validate this
construction.

Lemma 8.3.3. Let (S, d̂eg) be a growth–controlled, extended SB–surface. There is an
object (T, d̂egT , (v1, . . . , vk)) in the regular extension category such that all cyclic inter-
vals of ∂T have defect–sum at most 1.

In addition, d̂egT does take the value 5 as most as often as d̂eg.

Proof. Recall the notation from Definition 3.4.11. Assume there is a cyclic interval C
in ∂S with dd̂eg(C) = 2. We will show that there is a cyclic subinterval (v0, v1, . . . , vn)
such that d̂eg(v0) = d̂eg(vn) = 2 and d̂eg(vi) = 3 for all 1 ≤ i < n.

Assume to the contrary that there is no such subinterval. Consider the set C2 := {c ∈
C | d̂eg(c) = 2}. Since (S, d̂eg) is growth–controlled, there is no c ∈ C with d̂eg(c) = 1.
Therefore, an element x with d̂eg(x) > 3 lies between any two elements of C2. This
implies dd̂eg(C) ≤ 1, in contradiction to dd̂eg(C) = 2. Thus, there is at least one such
interval.

Consider all cyclic intervals (v0, v1, . . . , vn) with d̂eg(v0) = d̂eg(vn) = 2 and d̂eg(vi) = 3
for all 1 ≤ i < n. Pick one where n is minimal. We distinguish two cases:

• If n = 1, the assumptions of Lemma 6.2.13 are satisfied. We replace (S, d̂eg) by
the extension of Lemma 6.2.12, which reduces the length of the boundary by one.

• If n > 1, we have d̂eg(vn−1) = 3. Consider the other vertex adjacent to vn (call it
w). If d̂eg(w) = 2, the defect–sum of (v0, . . . , vn, w) would be 3, in contradiction
to the growth–control. Thus, d̂eg(w) ≥ 3. Therefore, the assumptions of Lemma
6.2.9 are satisfied. We replace (S, d̂eg) be the extension of Lemma 6.2.8, which
reduces the minimal length n by one.

We apply the second case until n = 1, and reduce the boundary length with the first
case. Since the boundary length is finite, this process terminates after a finite number
of steps.

Since we only used the extensions of Lemma 6.2.8 and Lemma 6.2.12, and both of
them do not increase the number of vertices with value 5, the additional claim follows
by induction.

The remaining work depends on the value of the boundary defect.

8.3.1 Boundary defect 0

In this subsection, we perform the explicit construction of the infinite regular extension
for extended SB–surfaces with boundary defect 0. Roughly, the extension is constructed
from the SB–surface and an infinite cylinder. The possible shapes of this extensions
correspond to the shapes of nanotubes, classified in [17].
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Since we want to combine a generically defined cylinder with the SB–surface, we extend
the surface along its boundary until the external degree sequence has a “nice” form. We
start off by defining what we mean by “nice” form in the case of boundary defect 0.

Definition 8.3.4. Let (S, d̂eg) be an extended SB–surface with boundary defect 0. As-
sume ∂S has the vertices (in order) v1, v2, . . . , vn.

d̂eg is a staircase if d̂eg(vi) = 4 if and only if d̂eg(vi+1) = 2 holds for all i ∈ Z/nZ.
We call d̂eg an m–staircase (for 2m ≤ n) if

1. d(2i− 1) = 4 for all 1 ≤ i ≤ m.

2. d(2i) = 2 for all 1 ≤ i ≤ m.

3. d(j) = 3 for all 2m < j ≤ n.

Crucially, an extended SB–surface can be extended in such a way that its external
degree sequence is an m–staircase. The value of m is actually unique, but we postpone
the proof of this fact until Lemma 8.3.10.

Lemma 8.3.5. Let (S, d̂eg) be a growth–controlled extended SB–surface with boundary
defect 0. There exists an element (T, d̂egT , (w1, . . . , wk)) in the regular extension category
such that d̂egT is an m–staircase for some m.

The boundary length of T is at most as large as the boundary length of S.

Proof. By Lemma 8.3.3, there is a growth–controlled extended SB–surface (U, d̂egU ),
where the defect–sum of every cyclic interval is at most 1.

Consider the maximal cyclic intervals in which d̂egU does only take values larger than
2 (called stretch intervals). Between these maximal intervals are cyclic intervals where
d̂egU takes only the value 2 (called glue intervals). Since the defect–sum of all cyclic
intervals is at most 1, all glue intervals have length 1. If any of the stretch intervals had
defect–sum 0, extending it by the glue intervals on both sides would make its defect–sum
2. Thus, the stretch intervals have defect–sum at most -1. Since there are exactly as
many stretch intervals as glue intervals, the defect–sum of each stretch interval is exactly
-1 (the boundary defect is 0). Thus, each of the stretch intervals contains exactly one
vertex v with d̂egU (v) = 4.

If all vertices have external degree 3, d̂egU is a 0–staircase. Otherwise, we construct it
manually. Without loss of generality, choose an enumeration v1, v2, . . . , vn of the vertices
in ∂U , such that d̂egU (v1) = 4. Then, consider the smallest i with d̂egU (vi) = 4 and
d̂egU (vi+1) 6= 2. There is a minimal j > i with d̂egU (vj) = 2. We apply the extension
from Lemma 6.2.8 to vj to obtain a growth–controlled (Lemma 6.2.9) extended surface
(U+, d̂eg

+
) with boundary (v1, v2, . . . , vj−1, v, vj+1, . . . , vn), where d̂eg

+
(vj−1) = 2.

We repeat these extensions until d̂egU is a staircase. Then, we choose an enumeration
(v1, v2, . . . , vn) such that d̂egU (v1) = 2 and d̂egU (v2) = 4 (we flip the orientation of
the previous enumeration). We apply the same argument as before to obtain an m–
staircase.
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Lemma 8.3.5 shows that we can construct an extension whose external degree sequence
is a staircase. Next, we define an infinite surface (a cylinder) that can be combined with
it. To see a graphic representation of it, consider Example 8.3.7.

Definition 8.3.6. The hexagonal cylinder with waist–length w and offset m
(with w ≥ 3 and 0 ≤ m ≤ w

2 ) is the vertex–faithful simplicial surface (V,E, F, η, ϕ), with

• V = {(x, y) ∈ Z2 | 0 ≤ x ≤ w, y ≥ max(0,m− dx2 e)}/ ∼ where ∼ is an equivalence
relation with the equivalence classes {(x, y)} for 0 < x < w and {(w, y), (0, y+m)}
for all y ≥ 0.

• E = E− ] E| ] E\, with

E− = {{(x, y), (x+ 1, y)} | 0 ≤ x < w, y ≥ max(0,m− dx2 e)}

E| = {{(x, y), (x, y + 1)} | 0 ≤ x < w, y ≥ max(0,m− dx2 e)}

E\ = {{(x, y), (x− 1, y + 1)} | 0 < x ≤ w, y ≥ max(0,m− dx2 e)}.

• F = F+ ] F−, with

F+ = {{(x, y), (x+ 1, y), (x, y + 1)} | 0 ≤ x < w, y ≥ max(0,m− dx2 e)}

F− = {{(x, y), (x, y + 1), (x− 1, y + 1)} | 0 < x ≤ w, y ≥ max(0,m− dx2 e)}.

• η : E → Pot2(V ) is defined by η(e) = {[v] | v ∈ e}, where [v] denotes the equiva-
lence class of v with respect to ∼.

• ϕ : F → Pot3(E) is defined by ϕ(f) = {e ∈ E | e ⊆ f}.

Well–defined. We have to show that (V,E, F, η, ϕ) defines a vertex–faithful simplicial
surface. The map η is well–defined since w > 1. Clearly, ϕ is well–defined.

We use the characterisation from Lemma 2.7.5. For that, we have to construct the
map η]ϕ : F → Pot3(V ) explicitly:

(η]ϕ)(f) = {[v] | v ∈ f}

Then, we can check the individual conditions of the lemma.

1. Let e1, e2 ∈ E with η(e1) = η(e2). We distinguish three cases, depending on the
sizes of the equivalence classes in η(e1).
• If both equivalence classes have size 1, e1 = e2 follows immediately.
• If both equivalence classes have size 2, there are y1, y2 ∈ Z with

η(e1) = {{(w, y1), (0, y1 +m)}, {(w, y2), (0, y2 +m)}}.

Since w > 1m this is only possible if |y2− y1| = 1, which uniquely determines
e1.
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• Otherwise, there is an (x, y) ∈ e1∩e2. Since w > 2, either x = 1 or x = w−1.
But then, e1 = e2 follows easily.

With similar reasoning, η]ϕ is injective.

2. Clearly, every vertex lies in an edge.

3. It is easy to see that every edge lies in a face.

4. It is also easy to see that each 2–element–subset of a face is an edge.

Thus, the cylinder is a vertex–faithful triangular complex.
To show that it is in fact a simplicial surface, we need to check the properties of

Definition 2.5.27. It is easy to see that every edge is incident to at most two faces.
Consider the maximal umbrellas. We start with (x, y) ∈ Z2, where 0 < x < w and

y > max(0,m− dx2 e). Then, the following edges are incident to (x, y):

{(x, y), (x+ 1, y)} {(x, y), (x, y + 1)} {(x, y), (x− 1, y + 1)}
{(x, y), (x− 1, y)} {(x, y), (x, y − 1)} {(x, y), (x+ 1, y − 1)}

This defines a maximal, closed umbrella–path.

(x, y) (x+ 1, y)

(x, y + 1)(x− 1, y + 1)

(x− 1, y)

(x, y − 1) (x+ 1, y − 1)

If we consider the point [(0, y)] with y > max(0,m − dx2 e), we obtain the following
incident edges:

{(0, y), (1, y − 1)} {(w, y −m), (w − 1, y −m+ 1)}
{(0, y), (1, y)} {(w, y −m), (w − 1, y −m)}

{(0, y), (0, y + 1)} {(w, y −m), (w, y −m− 1)}

This also defines a maximal, closed umbrella–path.
If y = max(0,m−dx2 e), the edges containing y−1 are missing. Also, if y+ x

2 = m, the
edge containing (x− 1, y) is missing. In these cases, we obtain a boundary vertex.
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Although Definition 8.3.6 seems daunting, the surface itself looks mostly harmless.

Example 8.3.7. The hexagonal cylinder of waist–length 5 and offset 2 looks like this
(infinitely extended upwards):

If we consider the boundary of the hexagonal cylinder in Example 8.3.7, the degrees
seem to form a staircase. The next remark shows that this always holds.

Remark 8.3.8. Let C be a hexagonal cylinder with waist–length w and offset m. Let
∂C = (V,E, η). The cyclic sequence

V → N p 7→ deg(p) (8.1)

is an m–staircase.

Proof. The boundary vertices of the cylinder are given by (k,max(0,m−dk2e)) (compare
the well–definedness of Definition 8.3.6 for details).

We compute the degree of (0, v). It is clearly incident to the face {(0, v), (1, v), (0, v+
1)} ∈ F+. If we consider (0, v) ∼ (w, 0), we also see the incidence to the faces

{(w, 0), (w, 1), (w − 1, 1)} ∈ F−
{(w − 1, 0), (w, 0), (w − 1, 1)} ∈ F+,

where (w − 1, 0) ∈ V since

m−
⌈
w − 1

2

⌉
=
{
m− w

2 ≤
w
2 −

w
2 = 0 w even

m− w−1
2 ≤ w−1

2 − w−1
2 w odd .

In the odd case, we obtain m ≤ bw2 c = w−1
2 .

If m > 0, the vertex (0,m) is also incident to the face {(1,m−1), (0,m), (1,m)} ∈ F−.
Thus,

deg([(0,m)]) =
{

3 m = 0
4 m > 0.
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In the case m = 0, every vertex (x, 0) with 0 < x < w is incident to the three faces

{(x, 0), (x+ 1, 0), (x, 1)} ∈ F+

{(x, 0), (x, 1), (x− 1, 1)} ∈ F−
{(x− 1, 0), (x, 0), (x− 1, 1)} ∈ F+,

which gives a 0–staircase.
If m > 0, the same argument is true for all (x, 0), where m − x

2 ≤ 0. Consider the
remaining vertices (x, dx2 e). If x is odd, the vertex is incident to the two faces{(

x,
x+ 1

2

)
,

(
x+ 1, x+ 1

2

)
,

(
x, 1 + x+ 1

2

)}
∈ F+{(

x,
x+ 1

2

)
,

(
x, 1 + x+ 1

2

)
,

(
x− 1, 1 + x+ 1

2

)}
∈ F−.

If x is even, the vertex is incident to the four faces{(
x+ 1, x2 − 1

)
,

(
x+ 1, x2

)
,

(
x,
x

2

)}
∈ F−{(

x,
x

2

)
,

(
x+ 1, x2

)
,

(
x, 1 + x

2

)}
∈ F+{(

x,
x

2

)
,

(
x, 1 + x

2

)
,

(
x− 1, 1 + x

2

)}
∈ F−{(

x− 1, x2

)
,

(
x,
x

2

)
,

(
x− 1, x2 + 1

)}
∈ F+.

Thus, we have an m–staircase.

At this point, we can construct the infinite regular extension of extended SB–surfaces
with boundary defect 0.

Theorem 8.3.9. Let (S, d̂eg) be a growth–controlled extended SB–surface with boundary
defect 0. Then, (S, d̂eg) has an infinite regular extension.

Proof. By Lemma 8.3.5, there is an extension (U, d̂egU , (v1, . . . , vk)) of (S, d̂eg), such that
d̂egU is an m–staircase for some m. Let w be the number of vertices in the boundary
graph ∂U .

We combine (with Lemma 4.2.12) (U, d̂egU ) with a hexagonal cylinder. This is possible
by Remark 8.3.8. To apply the uniqueness Theorem 8.2.11, we need to construct an
infinite sequence of extensions. We distinguish three cases:

1. If m = 0, we add vertices in the following sequence:

(0, 1), (1, 1), (2, 1), . . . , (w − 1, 1), (0, 2), (1, 2), . . .

This leads to the following changes in the external degree sequence, all of which
are growth–controlled:
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(3, . . . , 3)
↓

(5, 2, 3, . . . , 3, 2)
↓

(4, 4, 2, 3, . . . , 3, 2)
↓

(4, 3, 4, 2, 3, . . . , 3, 2)
↓
...
↓

...

(4, 3, . . . , 3, 4, 2, 2)
↓

(3, . . . , 3)

2. If 2m = w, the external degree sequence has the form (4, 2, 4, 2, 4, 2, . . . , 4, 2).

Extending the second vertex gives (3, 4, 3, 2, 4, 2, . . . , 4, 2).

Extending the fourth vertex gives (3, 4, 2, 4, 3, 2, . . . , 4, 2).

We continue until we have (2, 4, 2, 4, . . . , 2, 4). All these sequences are growth–
controlled. We repeat the procedure for the vertices on first, third, fifth, etc.
position.

3. Let 0 < m < w
2 . By Remark 8.3.8 and Definition 8.3.4, there is an enumera-

tion u1, u2, . . . , uw of the boundary vertices of the hexagonal cylinder such that
u2, u4, . . . , u2m are the vertices with degree 2 (with respect to the cylinder).
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By assumption, u2m+1 has degree 3. Thus, if we replace u2m by u2m + (0, 1), the
resulting external degree sequence remains a staircase.

We repeat this argument for u2m−2, then w2m−4, until u2.

Shifting by one, u2, u3, . . . , uw, u1 is an m–staircase again. We repeat the argument
from before. Since all vertices of a certain height are extended at some point, this
is an appropriate infinite sequence.

The construction in Theorem 8.3.9 relies on Lemma 8.3.5, which constructs an ob-
ject (U, d̂egU ) in the regular extension category, where d̂egU is an m–staircase. The
parameter w appears as the number of vertices in ∂U .

Both w and m appear to depend on the choice of (U, d̂egU ). The next lemma shows
that they are independent from this choice.

Lemma 8.3.10. Let (S, d̂eg) be a growth–controlled extended SB–surface with boundary
defect 0. If the infinite regular extension lim←−S can be constructed with two different
hexagonal cylinders, these cylinders have the same parameters w and m.

Proof. Following the construction of the infinite regular extension in Theorem 8.3.9,
there are vertex extensions (T1, d̂egT1) and (T2, d̂egT2) of (S, d̂eg), such that T1 +ρ1

C1 = lim←−S = T2 +ρ2 C2, for appropriate hexagonal cylinders C1 and C2, and graph
isomorphisms ρ1, ρ2 like in Lemma 4.2.12.

We can shift the boundary of C1 by (0, k) for any k ∈ N, until it gives a path in
C2. Thus, we only need to consider staircase–paths from (0, n + m) to (w, n) (for any
n ∈ N). There are three kinds of edges: horizontal, vertical, and diagonal. For a path
with out–degree 3, there are three options:

• Use two horizontal edges: This increases the length of the path by 1, and leaves
the second component invariant.

• Use two vertical edges: This does not change the length, but changes the second
component by 1.

• Use two diagonal edges: This increases both length and second component by 1.
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Staircase–paths only use two of the three edge–types. If they use diagonal and vertical
edges, then the offset would be equal to the waist–length, in contradiction to the fact
that the offset can be at most half the waist–length.

If they use horizontal and diagonal edges, we obtain k = m.
If they use horizontal and vertical edges, this gives a staircase in the opposite direction,

which never closes.

Lemma 8.3.10 motivates us to define waist–length and offset as properties of the
extended SB–surface. Comparing these parameters to (l,m) from the classification of
nanotubes in [17] tells us that the waist–length is l +m and the offset is equal to m.

Definition 8.3.11. Let (S, d̂eg) be a growth–controlled extended SB–surface with bound-
ary defect 0, whose infinite regular extension is built with a hexagonal cylinder of waist–
length w and offset m.

The waist–length of (S, d̂eg) is w and the offset of (S, d̂eg) is m.

Up to this point, the construction of the infinite regular extension has been done very
concretely. Now, we broaden our horizon a bit: We allow the combination of an extended
SB–surface (S, d̂eg), where d̂eg is a staircase, with a subsurface of the hexagonal cylinder.

Lemma 8.3.12. Let (S, d̂eg) be a growth–controlled extended SB–surface with boundary
defect 0. Let (T, d̂egT , (v1, . . . , vn)) be an object of the regular extension category such
that d̂egT is a staircase. Then, lim←−S is the combination of T and a subsurface of a
hexagonal cylinder, in the sense of Lemma 4.2.12.

Proof. By Lemma 8.3.5, there is an object (U, d̂egU , (v1, . . . , vn, w1, . . . , wk)) of the reg-
ular extension category such that d̂egU is an m–staircase. Similar as in Theorem 8.3.9,
we combine U with the subsurface C of the hexagonal cylinder (V,E, F, η, ϕ) induced
by the vertices

{(x, y) ∈ V | y ≥ k + y0, with y0 := min{ŷ | (x, ŷ) ∈ V }}.

We can interpret wk as boundary vertex of both U and C. By construction, wk is
a regular vertex. If we remove wk from U (forming U−wk) and simultaneously ex-
tend C along this vertex (forming C+wk such that wk remains regular), the com-
bined surface is unchanged. However, it is now represented as the combination of
(U ′, d̂egU ′ , (v1, . . . , vn, w1, . . . , wk−1)) and a subsurface of the hexagonal cylinder.

We repeat this argument until (T, d̂egT , (v1, . . . , vn)). By definition of the subsurface
C, the constructed extension is still a subsurface of the hexagonal cylinder.

With this more general conception, we can ask for the “smallest” possible extension
that allows this construction.

Definition 8.3.13. Let (S, d̂eg) be a growth–controlled extended SB–surface with bound-
ary defect 0. An element (T, d̂egT , (v1, . . . , vn)) of the regular extension category is called
tight if
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1. d̂egT is a staircase.

2. There is no other (U, d̂egU , (w1, . . . , wk)), where d̂egU is a staircase, such that there
is a morphism from (U, d̂egU , (w1, . . . , wk)) to (T, d̂egT , (v1, . . . , vn)).

An element (T, d̂egT , (v1, . . . , vn)) of the regular extension category is called v–tight if

1. d̂egT is a v–staircase.

2. There is no other (U, d̂egU , (w1, . . . , wk)), where d̂egU is a v–staircase, such that
there is a morphism from (U, d̂egU , (w1, . . . , wk)) to (T, d̂egT , (v1, . . . , vn)).

In Definition 8.3.13, the minimality is defined via the partial ordering of the regular
extension category. But actually, the concept of tightness denotes a global minimum.

Lemma 8.3.14. Let (S, d̂eg) be a growth–controlled extended SB–surface with boundary
defect 0. Then, there is a unique tight element in the regular extension category of
(S, d̂eg).

Proof. Since there are elements of the regular extension category whose external degree
sequences are staircases, and the partial order implicitly defined in Definition 8.3.13 is
bounded from below, there exists a tight element.

Consider such an element. By Lemma 8.3.12, we can associate a path P in the
hexagonal cylinder with it. Any other tight element has a path that crosses P in at least
one vertex (otherwise one would be strictly smaller).

Since the paths cannot use the vertical edges (then they would not be staircases),
there are only two options for path behaviour:

• Two horizontal edges.

• A horizontal edge and a diagonal edge.

If the paths cross, they have to have one horizontal edge in common. Consider this edge
and look to the first separation to the left: One path takes a horizontal edge and the
other a diagonal one. But then the path taking the diagonal edge could be tightened
(since the vertex below has degree 6).

Since the path is minimal, this cannot happen. The only possibility for this is that
the out–degree–sequence has the subsequence (4, 2, 4, 2) at this point. But in this case,
the lower path has to stay strictly below the upper one, as long as the the upper path
continues with the sequence of (4, 2). Therefore, all of those could be shifted down one
step, which is a contradiction.

While tight elements are unique, this is not true for v–tight elements. However, they
do possess some structure. To explore this, we need the concept of area.

Definition 8.3.15. Let (S, d̂eg) be an extended SB–surface and (T, d̂egT , (v1, . . . , vn))
an object of its regular extension category. The number of faces in T is the area of this
object.
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We can use the concept of area to describe the difference between two m–tight ele-
ments.

Lemma 8.3.16. Let (S, d̂eg) be a growth–controlled extended SB–surface with boundary
defect 0, waist–length w and offset m. Let E1 and E2 be two m–tight elements in
the regular extension category. Then, the difference between their areas is divisible by
2 gcd(w,m).

Proof. For m = 0, there is nothing to show since there is only one 0–tight element.
Otherwise, by Lemma 8.3.14, there is a unique tight element (T, d̂egT , (v1, . . . , vn))

with unique morphisms to E1 and E2. This allows us to describe the boundaries of E1
and E2 as closed paths (call them P1 and P2) in a subsurface of the hexagonal cylinder
(since by Lemma 8.3.12), the complement of T in lim←−S can be described by such a
subsurface).

Then, the external degree sequence of (T, d̂egT ) has the form

(2, 4, 3e1 , 2, 4, 3e2 , . . . , 2, 4, 3ev−1 , 2, 4, 3ev),

where we interpret 3k as k copies of 3.
Let P be the path associated to the boundary of T . Then, P1 and P2 have to intersect

P in at least one (2, 4)–pair (otherwise they are not tight). We can construct an m–tight
path in the following way:

1. Extend along the second (2, 4)–pair to obtain the external degree sequence

(2, 4, 3e1−1, 2, 4, 3e2+1, . . . , 2, 4, 3ev−1 , 2, 4, 3ev),

whose area is increased by 2. Repeat this until we have

(2, 4, 2, 4, 3e1+e2 , . . . , 2, 4, 3ev−1 , 2, 4, 3ev),

which increases the area by 2e1 in total.

2. Repeat the process for the third (2, 4)–pair, to obtain

(2, 4, 2, 4, 2, 4, 3e1+e2+e3 , . . . , 2, 4, 3ev−1 , 2, 4, 3ev),

with total increased are 2e1 + 2(e1 + e2).

3. Repeat the process for all remaining pairs.

Of course, we could start this process at any pair in the sequence. Any m–tight path
arises in one of these fashions. If we start at ej (and interpret the indices modulo m),
the total area increase is

2
m−1∑
i=1

i∑
k=1

ej+k = 2
m−1∑
i=1

(m− i)ej+i = 2
m∑
i=1

(m− i)ej+i. (8.2)
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Now we compute the difference between two of these sums (corresponding to the area
difference between two m–tight paths). Our starting positions are j and j + t with
1 ≤ t < m. This gives

2
(

m∑
i=1

(m− i)ej+i −
m∑
i=1

(m− i)ej+t+i

)
= 2

 m∑
i=1

(m− i)ej+i −
m+t∑
i=t+1

(m+ t− i)ej+i


Since 1 ≤ t < m we have 2 ≤ t+ 1 ≤ m, so we can split the sums:

= 2

 t∑
i=1

(m− i)ej+i +
m∑

i=t+1
(m− i)ej+i −

m∑
i=t+1

(m+ t− i)ej+i −
m+t∑
i=m+1

(m+ t− i)ej+i


= 2

 t∑
i=1

(m− i)ej+i − t
m∑

i=t+1
ej+i −

t∑
i=1

(t− i)ej+i+m


= 2

 t∑
i=1

(m− i− t+ i)ej+i − t
m∑

i=t+1
ej+i


= 2

(m− t)
t∑
i=1

ej+i − t
m∑

i=t+1
ej+i

 ,
where we have used that ej+i+m = ej+i.

From our description of T we deduce

2m+
m∑
i=1

ej+i = w ⇔
m∑

i=t+1
ej+i = w − 2m−

t∑
i=1

ej+i.

We use this to further simplify our difference.

= 2
(

(m− t)
t∑
i=1

ej+i − t
(
w − 2m−

t∑
i=1

ej+i

))

= 2
(
m

t∑
i=1

ej+i − t(w − 2m)
)

This difference is always divisible by 2 gcd(m,w − 2m) = 2 gcd(m,w).

Lemma 8.3.16 tells us that the area of a m–tight element is an invariant, if we only
consider it modulo 2 gcd(m,w). Of course, this is sometimes not helpful at all (for
gcd(m,w) = 1). But in many cases, it subdivides SB–surfaces of the same waist–length
and offset quite nicely.

Definition 8.3.17. Let (S, d̂eg) be a growth–controlled extended SB–surface with bound-
ary defect 0, waist–length w and offset m. The staircase area of S is the area of any m–
tight object in the regular extension category, interpreted as a number in Z/2 gcd(w,m)Z.

173



The staircase area is important since it changes predictably with local modifications
(we only have to count the difference between the faces before and after the modification).

For concreteness, we look at the vertex split from Section 8.1, again.
Corollary 8.3.18. Let (S, d̂egS) and (T, d̂egT ) be two growth–controlled extended SB–
surfaces with boundary defect 0, such that (T, d̂egT ) is constructed from splitting a vertex
of (S, d̂egS). Then, the staircase area of T is the staircase area of S plus 2.
Proof. Let w be the waist–length and m be the offset.

Pick an m–tight object from the regular extension category of (S, d̂egS). Performing
the vertex splits changes it into an extended SB–surface (U, d̂egU ). This extended SB–
surface is not necessarily m–tight in the regular extension category of (T, d̂egT ). If it is
not, we construct a “smaller” m–tight object. Let A be the staircase area of (S, d̂egS).
• If m = 0, we can remove all boundary vertices to obtain an object whose external

degree sequence is a 0–staircase. Its area is A+ 2− 2w.

• If m > 0, we enumerate the vertices of ∂U as v1, v2, . . . , vw like in Definition 8.3.4.
There are two possibilities to construct a “smaller” m–tight object:

1. If none of v1, v3, . . . , v2m−1 (the vertices with external degree 4) are singular,
they can all be reduced to produce an m–tight object with area A+ 2− 2m.

2. If v1 is regular, removing v1 changes the external degree sequence from

(4, 2, 4, 2, . . . , 4, 2, 3, . . . , 3)

to

(2, 3, 4, 2, . . . , 4, 2, 3, . . . , 3, 4)

If we can repeat this process w−2m times, we obtain another m–tight object
with external degree sequence

(3, 3, 4, 2, . . . , 4, 2, 3, . . . , 3)

Its area is A+ 2− 2w + 4m.
Since every element in {2w, 2m, 2w− 4m} is divisible by 2 gcd(w,m), the staircase area
of (T, d̂egT ) is A+ 2.

Thus, the subdivision defined by the staircase area carries a natural cyclic grading
with respect to vertex splitting.
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8.3.2 Negative boundary defect
In this subsection, we perform the explicit construction of the infinite regular extension
for extended SB–surfaces (recall Definition 3.4.17) with negative boundary defect (Def-
inition 8.3.2). Roughly, the extension is constructed from the SB–surface and several
cones. These extensions correspond to nanocones which are classified in [18]. Brinkmann
and Van Cleemput used geometric arguments to achieve this classification. We develop
a method relying on a group action (the growth action).

Similar to Subsection 8.3.1, we start by constructing a vertex–extension with “nice”
external degree sequence.

Lemma 8.3.19. Let (S, d̂eg) be a growth–controlled extended SB–surface with negative
boundary defect. There exists an element (T, d̂egT , (w1, . . . , wk)) in the regular extension
category such that its external degree sequence only takes the values 3 and 4. In addition,
the value 4 is taken as often as the absolute value of the boundary defect.

Proof. Applying Lemma 8.3.3 gives a growth–controlled extended SB–surface (U, d̂egU ),
where the defect–sum of every cyclic interval is at most 1. Consider three adjacent
vertices (v1, v2, v3) in the boundary ∂U such that d̂egU (v1) = 5.

• If d̂egU (v2) = 2, we know d̂egU (v3) > 2 (otherwise the cyclic interval induced
by {v2, v3} would have defect–sum 2). Thus, the extension of Lemma 6.2.8 is
possible and growth–controlled by Lemma 6.2.9. The extended degree subsequence
(5, 2, d̂egU (v3)) is replaced by (4, 4, d̂egU (v3)− 1).

• If d̂egU (v2) > 2, the extension of Lemma 6.2.3 is applicable and growth–controlled
by Lemma 6.2.5. It changes the degree subsequence from (5, d̂egU (v2), d̂egU (v3))
to (4, 5, d̂egU (v2)− 1, d̂egU (v3)).
We repeat this argument for the subsequence (5, d̂egU (v2), d̂egU (v3)) until the first
case is applicable.

In any case, the number of vertices with value 5 under d̂egU is reduced by 1. We apply
Lemma 8.3.3 again to regain the property that the defect–sum of cyclic intervals is at
most 1. Since this extension does not increase the number of vertices with value 5, we
can repeat this process until all vertices have values 2, 3, or 4.

We remove the vertices with value 2 iteratively. Let (v1, . . . , vj , . . . , vn) be a sequence
of boundary vertices such that

d̂egU (v1) = d̂egU (vn) = 4, d̂egU (vj) = 2, d̂egU (vk) = 3 otherwise.

We show that there is a vertex extension where the number of vertices with value 2 is
reduced by one. To follow this process, we describe the external degree sequence as tuple
(4, 3, . . . , 3, 2, 3, . . . , 3, 4). We proceed in three steps:

1. If d̂egU (v2) = d̂egU (vn−1) = 3, we use Lemma 6.2.8 to extend the surface. This
modifies the external degree sequence into

(4, 3, . . . , 3, 2, 4, 2, 3, . . . , 3, 4).
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By repeating this extension for both vertices with external degree 2, we obtain the
external degree sequence

(4, 3, . . . , 3, 2, 4, 2, 4, 2, 3, . . . , 3, 4).

We apply the extension to all vertices with external degree 2 repeatedly, until we
arrive at one of the following sequences:

(4, 2, 4, 2, . . . , 2, 4) (4, 3, . . . , 3, 2, 4, 2, 4, . . . , 2, 4)

2. Assume that the external degree sequence has the form

(4, 3, . . . , 3, 2, 4, 2, 4, . . . , 2, 4).

If we extend the surface with Lemma 6.2.8 at each vertex with value 2, we obtain
the sequence

(4, 3, . . . , 3, 2, 4, 2, 4, . . . , 2, 4, 3).
By repeating this argument, we arrive at the sequence (4, 2, 4, . . . , 4, 2, 4).

3. Assume that the external degree sequence has the form

(4, 2, 4, . . . , 4, 2, 4).

If we extend the surface by Lemma 6.2.8 at each vertex of value 2, we obtain the
sequence

(3, 4, 2, . . . , 2, 4, 3).
We repeat this process until we stop at the sequence (3, . . . , 3, 4, 3, . . . , 3).

Repeating this process for all vertices with value 2 results in an extended SB–surface
whose external degree sequence only takes the values 3 and 4.

The additional claim about the number of 4s taken is a direct consequence of Definition
8.3.2 of the boundary defect.

Lemma 8.3.19 shows how to construct a “nice” vertex–extension. Next, we have to
define an infinite simplicial surface. In contrast to Subsection 8.3.1, the surface is more
complicated for negative boundary defect. It consists of several “cones” that are glued
together. Thus, we start by defining these “cones” or slices. Figures 8.2 and 8.3 show
illustrations of the slices.

Definition 8.3.20. The hexagonal slice with base length b is the vertex–faithful
simplicial surface (V,E, F, η, ϕ) with:

• V = {(x, y) ∈ Z2 | b ≤ x, 0 ≤ y ≤ x}.

• E = E− ] E/ ] E| with

E− = {{(x, y), (x+ 1, y)} | (x, y) ∈ V }
E/ = {{(x, y), (x+ 1, y + 1)} | (x, y) ∈ V }
E| = {{(x, y), (x, y + 1)} | (x, y) ∈ V, y < x}.
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Figure 8.2: hexagonal slice with b = 0 Figure 8.3: hexagonal slice with b = 2

• F = F+ ] F− with

F+ = {{(x, y), (x+ 1, y), (x+ 1, y + 1)} | (x, y) ∈ V }
F− = {{(x, y), (x, y + 1), (x+ 1, y + 1)} | (x, y) ∈ V, y < x}.

• η : E → Pot2(V ) is defined by η(e) = e.

• ϕ : F → Pot3(E) is defined by ϕ(f) = {e ∈ E | e ⊆ f}.

Well–defined. We have to show that the hexagonal slice is a vertex–faithful simplicial
surface. To do so, we check the prerequisites of Lemma 2.7.5.

1. Clearly, η and η]ϕ are injective.

2. The vertex (x, y) lies in the edge {(x, y), (x+ 1, y)}.

3. The edges {(x, y), (x+ 1, y)} and {(x, y), (x+ 1, y+ 1)} lie in the face {(x, y), (x+
1, y), (x + 1, y + 1)}. The edge {(x, y), (x, y + 1)} lies in the face {(x, y), (x, y +
1), (x+ 1, x+ 1)}.

4. By construction, every face has three edges.

Thus, the hexagonal slice is a vertex–faithful triangular complex.
Next, we have to show that there are neither edge ramifications nor vertex ramifica-

tions. Clearly, each edge can lie in at most two faces, so there are no ramified edges.
To show that there are no ramified vertices, consider the vertex (x, y). In general, such

a vertex is incident to six edges and six faces, which we can describe by the adjacent
edges:

{(x, y), (x+ 1, y)} ∈ E− {(x, y), (x+ 1, y + 1)} ∈ E/ {(x, y), (x, y + 1)} ∈ E|
{(x, y), (x− 1, y)} ∈ E− {(x, y), (x− 1, y − 1)} ∈ E/ {(x, y), (x, y − 1)} ∈ E|.
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(x, y) (x+ 1, y)

(x, y + 1) (x+ 1, y + 1)

(x− 1, y)

(x, y − 1)(x− 1, y − 1)

Thus, a vertex (x, y) with x > b and y 6∈ {0, x} is an inner vertex. In the corner cases,
we obtain fewer faces:

• If x = b, the two edges to (x− 1, y) and (x− 1, y − 1) are missing.

• If y = 0, the two edges to (x− 1, y − 1) and (x, y − 1) are missing.

• If y = x, the two edges to (x, y + 1) and (x− 1, y) are missing.

It is important to note that all combinations of these restrictions lead to a unique
maximal umbrella. Thus, (V,E, F, η, ϕ) is a simplicial surface.

Since we want to combine several of these slices into a larger surface, it is helpful
to know the umbrella paths of each vertex explicitly. Since these have already been
described in the well–definedness of Definition 8.3.20, we just restate those results:

Remark 8.3.21. Let (V,E, F, η, ϕ) be a hexagonal slice with base length b. Let (x, y) ∈
V . The umbrella–path of (x, y) can be described by a sequence of adjacent vertices
(v1, . . . , vk):

• The edges of the path are ei := {(x, y), vi} for 1 ≤ i ≤ k.

• The faces of the path are fi := {(x, y), vi, vi+1} for 1 ≤ i < k. If the path is closed,
fk := {(x, y), vk, v1} also is a face.

With this convention, we have:

• (x, y) = (0, 0) (only for b = 0) is a boundary vertex, whose umbrella–path is
described by

((1, 0), (1, 1)).

• (x, y) = (b, 0) with b > 0 is a boundary vertex, whose umbrella–path is described by

((b+ 1, 0), (b+ 1, 1), (b, 1)).
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Figure 8.4: Hexagonal cake with base lengths (2, 0, 0, 1)

• (x, y) = (b, b) with b > 0 is a boundary vertex, whose umbrella–path is described by

((b, b− 1), (b+ 1, b), (b+ 1, b+ 1)).

• (x, y) = (x, 0) with x > b is a boundary vertex, whose umbrella–path is described
by

((x+ 1, 0), (x+ 1, 1), (x, 1), (x− 1, 0)).

• (x, y) = (x, x) with x > b is a boundary vertex, whose umbrella–path is described
by

((x− 1, x− 1), (x, x− 1), (x+ 1, x), (x+ 1, x+ 1)).

• (x, y) satisfying none of the cases above is an inner vertex, whose umbrella–path
is described by

((x− 1, y − 1), (x, y − 1), (x+ 1, y), (x+ 1, y + 1), (x, y + 1), (x− 1, y)).

We can combine several hexagonal slices to construct an infinite extension. Since this
combination has a cyclic nature, it is reminiscent of a cake, which motivates the name
of the surface. One of these surfaces is illustrated in Figure 8.4.

Definition 8.3.22. Let (b1, b2, . . . , bn) ∈ (Z≥0)n (with n ≥ 1) and Si = (Vi, Ei, Fi, ηi, ϕi)
hexagonal slices with base length bi, such that

∑n
i=1 bi ≥ 2. The hexagonal cake with

base lengths (b1, . . . , bn) is the simplicial surface (
⊎
Vi/ ∼V ,

⊎
Ei/ ∼E ,

⊎
Fi, η, ϕ) with

• ∼V is an equivalence relation on
⊎
Vi, such that (k + bi, 0) ∈ Vi is equivalent to

(k + bi+1, k + bi+1) ∈ Vi+1, where we read indices modulo n.

• ∼E is an equivalence relation on
⊎
Ei, such that {(k + bi, 0), (k + 1 + bi, 0)} ∈ Ei

is equivalent to {(k+ bi+1, k+ bi+1), (k+ 1 + bi+1, k+ 1 + bi+1)} ∈ Ei+1, where we
read indices modulo n.
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• η maps the edge [e]∼E with e ∈ Ei to {[v]∼V | v ∈ ηi(e)}.

• ϕ maps the face f ∈ Fi to {[e]∼E | e ∈ ϕi(f)}.

Well–defined. We have to show that the hexagonal cake is a well–defined simplicial
surface.

We start by remarking that η is well–defined by definition of ∼V and ∼E . Next, we
check the conditions for polygonal complexes from Definition 2.5.2.

1. Since each face lies in one of the slices Si, there is an alternating sequence of incident
vertices and edges, (v1, e1, v2, e2, v3, e3), with {v1, v2, v3} ⊆ Vi and {e1, e2, e3} ⊆ Ei.
It remains to show that {[v1]∼V , [v2]∼V , [v3]∼V } and {[e1]∼E , [e2]∼E , [e3]∼E} consist
of three elements each.
By definition of ∼E , it suffices to show that two vertices that are incident to the
same face in Si are not equivalent under ∼V .
Consider {(x, y), (x+ 1, y), (x+ 1, y + 1)} ∈ F+. Since the difference between the
first component and the base length of the slice is invariant under ∼V (denoted
height in Definition 8.3.29), we only have to prove that (x+ 1, y) ∼V (x+ 1, y+ 1)
is impossible. The only possible case where these two vertices are identified with
other vertices is (x, y) = (0, 0), which implies bi = 0.
Since the vertices are not identified directly, each of the Sj (for j 6= i) has to have
a vertex that is identified with vertices in Sj−1 and Sj+1. The only such vertex is
(0, 0). If all Sj have this vertex, we have bj = 0, which implies b1 + · · · + bn = 0,
in contradiction to our assumption.
Now we consider the other possible face {(x, y), (x, y + 1), (x + 1, y + 1)} ∈ F−.
We obtain the equivalence (x, y) ∼V (x, y + 1), which leads to (x, y) = (1, 0) and
bi ≤ 1. By the same argument as above, bj = 0 for j 6= i, so

∑n
k=1 bk ≤ 1, which is

impossible.

2. Clearly, every vertex lies in an edge, and every edge lies in a face.

Since all faces in the Si are triangular, this holds for the hexagonal cake as well.
We have to show that the hexagonal cake has no ramified edges. This only needs

to be proven for those edges that lie in a non–trivial ∼E–class. Consider the edge
{(k+ bi, 0), (k+ 1 + bi, 0)} ∈ Ei. It is incident to a unique face of Si and ∼E–equivalent
to the edge {(k + bi+1, k + bi+1), (k + 1 + bi+1, k + 1 + bi+1)} ∈ Ei+1, which is incident
to exactly one face of Si+1. Thus, all of these edges are inner edges.

Finally, we have to show that the hexagonal cake has no ramified vertices. This only
needs to be proven for those vertices that lie in a non–trivial ∼V –class.

First, we consider the case in which the ∼V –class contains exactly two elements, say
(k + bi, 0) ∈ Vi and (k + bi+1, k + bi+1) ∈ Vi+1.

• If k = 0, we have bi 6= 0 6= bi+1 (otherwise there would be more than two elements
in the ∼V –class). Remark 8.3.21 describes the umbrellas of these boundary vertices
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as

((bi + 1, 0), (bi + 1, 1), (bi, 1)) ∈ V 3
i

((bi+1, bi+1 − 1), (bi+1 + 1, bi+1), (bi+1 + 1, bi+1 + 1)) ∈ V 3
i+1.

Since (bi + 1, 0) ∼V (bi+1 + 1, bi+1 + 1), these umbrellas form a boundary vertex in
the hexagonal cake.

• If k > 0, Remark 8.3.21 describes the umbrella of (k + bi, 0) as

((k + bi + 1, 0), (k + bi + 1, 1),
(k + bi, 1), (k + bi − 1, 0))

and the umbrella of (k + bi+1, k + bi+1) as

((k + bi+1 − 1, k + bi+1 − 1), (k + bi+1, k + bi+1 − 1),
(k + bi+1 + 1, k + bi+1), (k + bi+1 + 1, k + bi+1 + 1)).

Since (k+ bi+ 1, 0) ∼V (k+ bi+1 + 1, k+ bi+1 + 1) and (k+ bi−1, 0) ∼V (k+ bi+1−
1, k + bi+1 − 1), this forms an inner vertex.

Next, we consider the case where the ∼V –class contains more than two elements. In this
case, we have (bi, 0) ∈ Vi, identified with (0, 0) ∈ Vk for i < k < j and (bj , bj) ∈ Vj for
some j > i (where we read indices modulo n). Then, Remark 8.3.21 gives the umbrellas

((bi + 1, 0), (bi + 1, 1), (bi, 1)) ∈ V 3
i

((1, 0), (1, 1)) ∈ V 2
k

((bj , bj − 1), (bj + 1, bj), (bj + 1, bj + 1)) ∈ V 3
j

These umbrellas are combined via ∼V to form a boundary vertex of the cake.

To combine a hexagonal cake with the vertex–extension of an extended SB–surface
(S, d̂eg), we need to know the boundary of the cake.

Lemma 8.3.23. Let (V,E, F, η, ϕ) be the hexagonal cake with base lengths (b1, . . . , bn) ∈
Nn. It has exactly one connected boundary component with degree–sequence

(4, 3b1−1, 4, 3b2−1, . . . , 4, 3bn−1),

where 3k represents k copies of 3.

Proof. From the well–definedness of Definition 8.3.22, we obtain that the boundary
vertices of the hexagonal cake come from the vertices (bi, y) ∈ Vi, where (Vi, Ei, Fi, ηi, ϕi)
are the hexagonal slices from Definition 8.3.22.

Since bi > 0 for all 1 ≤ i ≤ n, all ∼V –classes contain at most two elements. A
boundary vertex containing exactly one element has degree 3 (same degree as in the
hexagonal slice). There are bi − 1 of that in the hexagonal slice with base bi. The
vertices with exactly two elements have degree 4.
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With this, we can prove that infinite extensions exist for negative boundary defects.

Theorem 8.3.24. Let (S, d̂eg) be a growth–controlled disc extended SB–surface with
negative boundary defect. Then, (S, d̂eg) has an infinite regular extension.

Proof. By Lemma 8.3.19, there is an element (U, d̂egU , (v1, . . . , vk)) in the regular ex-
tension category of (S, d̂eg), such that d̂egU only takes the values 3 and 4 on ∂U .

We combine (with Lemma 4.2.12) (U, d̂egU ) with a hexagonal cake that has appropri-
ate parameters. This is possible by Lemma 8.3.23.

To finish the proof, we apply the uniqueness Theorem 8.2.11 and need to construct an
infinite sequence of vertex–extensions. Assume the external degree sequence of (U, d̂egU )
has the form

(4, 3b1 , 4, 3b2 , 4, 3b3 , . . . , 4, 3bn),

where 3k stands for a sequence of k 3s.
If bi = 0 for all 1 ≤ i ≤ n, the external degree sequence has the form (4, 4, . . . , 4). It

has at least length 3:

• Length 0 is impossible since the boundary defect is negative.

• Length 1 is impossible since there would have to be an edge with only one incident
vertex, in contradiction to Definition 2.5.2.

• Length 2 is impossible since there would be two edges with the same incident
vertices, which is a contradiction since U is vertex–faithful.

Consider any boundary subsequence (v1, v2, v3).

v1 v2 v3

We apply Lemma 6.2.3 to extend the edges between the vertex–pairs {v1, v2} and
{v2, v3}. These extensions are growth–controlled by Lemma 6.2.5 and they change the
external degree sequence from (. . . , 4, 4, 4, . . . ) to (. . . , 3, 5, 2, 5, 3, . . . ).

v1 v2 v3

A final extension at the vertex v2 (according to Lemma 6.2.8) gives the external degree
sequence (. . . , 3, 4, 4, 4, 3, . . . ), which has the form

(4, 3b1 , 4, 3b2 , 4, 3b3 , . . . , 4, 3bn).

In contrast to before, now bi ≥ 1 for at least one 1 ≤ i ≤ n.
Without loss of generality, b2 ≥ 1. Let (v1, . . . , vb2+2) be the vertices corresponding

to the subsequence (4, 3b2 , 4).
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v1 v2 v3 vb2+2

We extend the edge between v1 and v2 according to Lemma 6.2.3, with the external
degree sequence

(4, 3b1 , 3, 5, 2, 3b2−1, 4, 3b3 , . . . , 4, 3bn)
v1 v2 v3 vb2+2

Next, we extend along v2, according to Lemma 6.2.8 to obtain the external degree
sequence

(4, 3b1 , 3, 4, 4, 2, 3b2−2, 4, 3b3 , . . . , 4, 3bn)
v1 v3 vb2+2

We continue in this vein until we arrive at

(4, 3b1+1, 4, 3b2−1, 4, 3b3+1, . . . , 4, 3bn)
v1 vb2+2

At this point, we can apply the same extension to b3 + 1, then to b4 + 1, and so on. In
this fashion, we can construct the full surface.

Our next goal is to decide how many of these extensions are actually distinct. To do
so, we consider all closed paths in the hexagonal cake that only take the values 3 and 4.

Definition 8.3.25. Let (S, d̂eg) be an extended SB–surface. If d̂eg only takes the values
3 and 4, it is called a cake boundary.

If the extended degree sequence of (S, d̂eg) is (4, 3t1 , 4, 3t2 , . . . , 4, 3tk), the type of d̂eg
is the orbit of the dihedral group D2k on (t1, t2, . . . , tk), under the action

D2k × Zk → Zk (g, (x1, . . . , xk)) 7→ (xg−1(1), . . . , xg−1(xk)).

Any element of this orbit is a type representative.

In the proof of Theorem 8.3.24, we already showed how different boundary types can
be related.

Remark 8.3.26. Let (S, d̂eg) be an extended SB–surface such that d̂eg is a cake bound-
ary with type representative (t1, t2, . . . , tk), with k ≥ 2.

Then, there exists an extension (U, d̂egU ) such that d̂egU is a cake boundary with type
representative (t1 + 1, t2 − 1, t3 + 1, . . . , tk).

We can extend the operation from Remark 8.3.26 into a group action of Zk.
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Definition 8.3.27. The group action of Zk on Zk via

((a1, . . . , ak),



x1
...
xi
...
xk


) 7→



x1 + an − a1 + a2
...

xi + ai−1 − ai + ai+1
...

xk + ak−1 − ak + a1


is called growth action.

The growth action is compatible with the action of the dihedral group from Definition
8.3.25. Thus, it induces an action on types.

Lemma 8.3.28. Let B be the set of orbits of D2k on Zk and let G : Zk × Zk → Zk be
the growth action. Then, we have an action Zk ×B → B,

Zk ×B → B (a,X) 7→ {G(a, x) | x ∈ X}.

Well–defined. Since the growth action and the dihedral group action

D2k × Zk → Zk (g, (x1, . . . , xk)) 7→ (xg−1(1), . . . , xg−1(xk))

commute, the action is well–defined.

We want to understand which cake boundary types result in the “same” extensions.
Therefore, we are interested in the orbits of the growth action on these types.

So far, we know that applying the growth action does not change the infinite extension.
We also want to show the other direction: If two cake boundaries construct the same
infinite extension, their types lie in the same orbit of the growth action.

To do so, we introduce the concept of height. Informally, it measures the “distance”
to the centre of the cake.

Definition 8.3.29. Let ]ki=1Si be a hexagonal cake with base lengths (b1, b2, . . . , bk). A
vertex (x, y) ∈ Vi has height x− bi.

Well–defined. We have to show that the height is independent from the vertex repre-
sentative. If (h + bi, y) ∈ Vi is equivalent to (h + bi+1, y

∗) ∈ Vi+1, the height remains
invariant.

Now, we can show that cake boundary types of cakes within the same infinite regular
extension can be obtained by application of the growth action.

Lemma 8.3.30. Let (S, d̂eg) be an extended SB–surface with negative boundary defect,
such that d̂eg is a cake boundary. Assume (T, d̂egT ) is an extension such that d̂egT is
also a cake boundary. Then, the types of these two cake boundaries lie in the same orbit
of the action in Lemma 8.3.28.
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Proof. Let S∞ be the infinite regular extension of (S, d̂eg) from Theorem 8.3.24. By
Definition 8.2.3, there is a unique twilight morphism ψ : T → S∞.

If there exists a cyclic interval (v1, v2, . . . , vk) in ∂T with

d̂egT (v1) = d̂egT (vk) = 4 d̂egT (v2) = · · · = d̂egT (vk−1) = 3,

such that ψ(vi) is not a boundary vertex of the cake, we can reduce all of these vertices
to obtain an extension with fewer faces. Since the reduction step changes the type of
d̂egT like the growth action, the claim follows. Therefore, we show the existence of such
an interval.

For this, we insert a discussion about height. There are three different paths in a
hexagonal slice that have external degree 3:

1. Only use edges in E−: path k 7→ (x+ k, y). The height increases at every step.

2. Only use edges in E/: path k 7→ (x−k, y−k). The height decreases at every step.

3. Only use edges in E|: path k 7→ (x, y − k). The height stays invariant.

We oriented the paths such that they move from the boundary {(k, k) | k ∈ Z} to the
boundary {(k, 0) | k ∈ Z}. If we follow such a path, it can be modified by two scenarios:

• If we change the slice, the path types change as follows:

E/ → E| → E−

• If we encounter a vertex with external degree 4 that does not lie on a slice boundary,
the path types change as follows:

E− → E| → E/
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• If we encounter a vertex with external degree 4 lying on a slice boundary, both
of the previous path changes apply simultaneously. Thus, the path types remain
unchanged.

We distinguish two cases.

1. If all vertices of ∂T with external degree 4 have height 0, there can be no path of
the form E/ (since the height cannot be decreased). There also cannot be a path
of type E− since it would be unbounded. Thus, all paths are of type E|. If they
change the slice, they would become a path of type E−, whose height would rise
indefinitely (since no vertex with external degree 4 could stop it). Thus, the vertex
at the slice transition has to have external degree 4. In particular, ∂T runs along
the boundary of the cake. By the construction of Theorem 8.3.24, this boundary
is equal to ∂S. Thus, (S, d̂egS) = (T, d̂egT ).

2. Assume there is at least one vertex v with external degree 4 that has positive
height. We want to show that the previous or the next vertex with external degree
4 has positive height. Assume the previous one has zero height. The path from
the previous vertex to v can only have the types E| and E− and it has to end with
the type E−. Therefore, the path to the next vertex starts with E− or E|. In
either case, the height does not decrease. Thus, the height of the next vertex with
external degree 4 is positive.
By the previous argument, there is a cyclic interval (v1, v2, . . . , vk) in ∂T with

d̂egT (v1) = d̂egT (vk) = 4, d̂egT (v2) = · · · = d̂egT (vk−1) = 3.

If ψ(vi) is not a boundary vertex of the cake for every 2 ≤ i < k, we are finished.
Otherwise, consider the map {1, . . . , k} → Z≥0, which assigns i the height of vi.
Since only slice transitions happen in this interval, and there are subsequences of
decreasing and increasing height (the heights of v1 and vk are positive), there are
x, y ∈ {2, . . . , k − 1} such that:
• (v1, . . . , vx) is a path of type E/.
• (vx, . . . , vy) is a path of type E|.
• (vy, . . . , vk) is a path of type E−.
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We follow ∂T further until the next vertex vm of external degree 4, following the
cyclic interval (vk, vk+1, . . . , vm). By construction, the only possible path types are
E| and E−. Thus, the height of every vi (with k ≤ i ≤ m) is positive. In this case,
(vk, vk+1, . . . , vm) is the desired cyclic interval.

8.3.3 Boundary defect -1

In the previous Subsection 8.3.2, we constructed the infinite regular extension for ex-
tended SB–surfaces with negative boundary defect. In this subsection, we focus on those
extended SB–surfaces with boundary defect −1. Our goal is to classify them.

In contrast to lower boundary defects (where we have to consider the growth action
from Definition 8.3.27), there is essentially only one possibility to construct an infinite
surface from one slice. This relies on an analysis of certain paths within a hexagonal
slice.

Lemma 8.3.31. Let H be the hexagonal cake consisting of a single slice and let P be a
cyclic path in H of length L with external degree sequence (4, 3, 3, . . . , 3).

Then, the [(L, 0)] lies on the path and is the vertex with external degree 4.

Proof. The path has to go from (y, y) to (0, y). If the vertex with external degree 4 is
[(0, y)], the only possible path is of type E|.

Otherwise, any path uses two types of edges. Since it is not possible to use paths that
increase and decrease height, there is no such path.

This uniqueness–result allows us to define a surface invariant.

Definition 8.3.32. Let (S, d̂eg) be a growth–controlled extended SB–surface with bound-
ary defect -1. Let (T, d̂egT , (v1, . . . , vn)) be an element of the regular extension category
with external degree sequence (4, 3, . . . , 3). Let f be the number of faces in T , and let L
be the boundary length of T . The number f−L2 is called the staircase area of (S, d̂eg).

Well–defined. We have to show that the staircase area is independent from the choice of
(T, d̂egT , (v1, . . . , vn)). We can assume that the boundary of T is a path in a hexagonal
cake consisting of one slice.

By Lemma 8.3.31, the path is unique. The number of faces between two paths of
length L and L − 1 is 2L − 1. Adding those up gives L2 (for the difference to the
hypothetical path of length 0).

This gives a natural Z–grading to the surfaces with boundary defect -1.

Corollary 8.3.33. Since vertex splits increase the staircase area by 2, the growth–
controlled SB–surfaces with boundary defect -1 are graded by their staircase area.
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8.3.4 Boundary defect -2

In Subsection 8.3.2, we constructed the infinite regular extension for extended SB–
surfaces with negative boundary defect. In this subsection, we focus on those extended
SB–surfaces with boundary defect −2. We would like to understand how many there
actually are, i. e. to count the orbits of the growth action (compare Definition 8.3.27
and Lemma 8.3.28).

Remark 8.3.34. The growth action G : Z2 × Z2 → Z2 has three orbits, with represen-
tatives (0, 0) and (0, 1), and (0, 2).

Proof. Let (x1, x2) ∈ Z2 and (a1, a2) ∈ Z2. Then, the action of (a1, a2) on (x1, x2) is

(x1 + 2a2 − a1, x2 + 2a1 − a2).

We start by noting an invariant: The difference x2 − x1 modulo 3.
Next, we construct a canonical representative of the orbit. We try to find (a1, a2) ∈ Z2

such that x1 + 2a2 − a1 = 0, which means a1 = x1 + 2a2. Then, the action becomes

(0, x2 + 2x1 + 3a2).

We can now choose a2 to construct one of the three representatives.

To transfer this statement to the action on cake boundary types, we need to do a bit
more work:

Corollary 8.3.35. The growth action on cake boundary types has two orbits. The first
one contains all type representatives of the form (k, k) (for k ∈ Z≥0), the second one
contains all type representatives of the form (k, k + 1) (for k ∈ Z≥0).

Proof. By the action of the dihedral group D4, the classes with representatives (0, 1)
and (0, 2) (from Remark 8.3.34) coincide.

Let (x1, x2) ∈ (Z≥0)2 be the type representative of a cake boundary, such that

G((a1, a2), (x1, x2)) ∈ {(0, 0), (0, 1)},

where G : Z2 ×Z2 → Z2 is the growth action and (a1, a2) ∈ Z2. We show that there is a
(b1, b2) ∈ (Z≥0)2 such that

G((b1, b2), (x1, x2)) ∈ {(k, k) | k ∈ Z≥0} ∪ {(k, k + 1) | k ∈ Z≥0}.

Let k ∈ Z≥0 such that k + a1 > 0 and k + a2 > 0, then

G((a1 + k, a2 + k), (x1, x2)) = G((a1, a2), (x1, x2)) + (k, k).

Therefore, (a1 + k, a2 + k) is the desired (b1, b2).

This allows us to choose some nice representatives for the two classes:

188



• Cakes with equal parameters

• Cakes where the parameters are 1 apart

For boundary defect 0 and -1 we defined the staircase area (Definition 8.3.17 and
Definition 8.3.32), to give the SB–surfaces further structure. Extending this concept to
boundary defect -2 requires a definition of canonical cake representative.

Definition 8.3.36. Let (S, d̂eg) be a growth–controlled extended SB–surface with bound-
ary defect -2. A cake boundary is balanced if it has a type representative (k, k) or
(k, k + 1) for a k ∈ Z.

We mention in passing that balanced cake boundaries correspond to (near) symmetric
paths in [18].

Restricting the possible types to balanced ones makes the possible paths unique.

Lemma 8.3.37. Let H be the hexagonal cake consisting of two slices with balanced cake
boundary. Let P be a cyclic path in H that divides H into a finite component and another
hexagonal cake with balanced cake boundary. Then, P only uses edges of type E|.

Proof. Since the path is cyclic, it ends at the same height at which it begins. By
assumption, it passes over two slice transitions and two degree–4–vertices. Since edges
in E| leave the height invariant, E/ decrease it and E− increase it, there are two options:

• All edges have the type E|.

• There are edges in E/ and E−.

In the second case, the slice transitions and the degree–4–vertices cannot alternate (oth-
erwise, only two edge types would be used). Thus, we have the subpath

E− → E| → E/

for the two degree–4–vertices. The slice transitions complete it on both sides, and shift
it to edges of type E|. Since positive and negative heights have to balance out, the path
P shifts the cake boundary from (a1, a2) to (a1 + 2j, a2 − j) (like the growth action).

1. If a1 = a2, the boundary (a1 + 2j, a2 − j) is not balanced except for j = 0.

2. If a1 = 1 + a2 or a1 + 1 = a2, the boundary (a1 + 2j, a2− j) is not balanced except
for j = 0.

Thus, the only option is that all edge types lie in E| (this means that the degree–4–
vertices coincide with the slice transitions).

Like we did for Definition 8.3.32 in the case of boundary defect -1, we normalise the
number of faces with respect to the length of a balanced boundary. Since the boundary
lengths within a hexagonal cake change very predictably (compare Lemma 8.3.37), we
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can calculate the area for all balanced boundaries of higher length. We can also calculate
the number of faces for all lower length, even for “hypothetical” cases like “0 length”.

While this might not give a number of faces that is easy to interpret, it is a combi-
natorial invariant that does not depend on the concrete boundary length that is used in
the computation of the number of faces.

Definition 8.3.38. Let (S, d̂eg) be a growth–controlled extended SB–surface with bound-
ary defect -2. Let (T, d̂egT , (v1, . . . , vn)) be an element from the regular extension cate-
gory whose external degree sequence is a balanced cake boundary of length L. Let f be
the number of faces in T . The staircase area of (S, d̂eg) is

• f − L2

2 , if L is even.

• f − L2−1
2 , if L is odd.

Well–defined. We start with the case that L is even. By Lemma 8.3.37, all other possible
balanced boundaries have even length as well and are constructed from edges of type E|.
Thus, on a single slice they coincide with the paths from Lemma 8.3.31. Since L is even,
both of these have length l := L

2 . The number of faces between the paths of length L
and L−2 is thus 2(2l−1). To compute the hypothetical difference to the path of length
0, we sum these up to obtain 2l2 = L2

2 .
Next, we consider L odd. Like in the previous case, we obtain two paths in a single

slice, of length l and l + 1 with 2l + 1 = L. Again, we compute the difference to a
hypothetical path of length 1, to obtain

l∑
i=1

(2i− 1) +
l∑

i=1
(2(i+ 1)− 1) = l2 +

l+1∑
i=2

(2i− 1)

= l2 + (l + 1)2 − 1
= 2l2 + 2l

= 4l2 + 4l
2

= (2l + 1)2 − 1
2

= L2 − 1
2 .

Vertex splits increase the staircase area by 2, which gives a natural Z–grading.

Corollary 8.3.39. Since vertex splits increase the staircase area by 2, the growth–
controlled SB–surfaces with boundary defect -2 are graded by their staircase area.
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9 Geodesic Duality

In this chapter, we employ the formalism of Dress–surfaces (compare Section 2.6) to
characterise all geodesic self–dual regular surfaces. Geodesic duality is the external
surface symmetry called opp in Wilson’s classification [71]. Core parts of this chapter
are submitted in [11].

Using the correspondence to triangle subgroups from Subsection 4.3.2, we characterise
the corresponding subgroups instead (Section 9.3). We obtain that all of these subgroups
contain a particular normal subgroup.

Therefore, we can interpret a degree–d–surface as homomorphic image of a quotient
of a triangle group (Section 9.4). To carry over the characterisation of subgroups cor-
responding to triangulations, we employ the voltage assignments from [3] (Section 9.5).
We conclude with a characterisation of all geodesic self–dual degree–d–surfaces (Theorem
9.6.1), and give the full list of geodesic self–dual degree–d–surfaces for d < 10.

The approach to describe certain objects by subgroups of a “universal” group can be
generalised quite far, compare [42].

9.1 Geodesic duality

Definition 2.6.1 allows the following duality: If (C, σ0, σ1, σ2) is a Dress–surface, then
(C, σ0, σ1, σ0σ2) is a Dress–surface as well (in [71, page 562], this operation is called opp).

Definition 9.1.1. Let S = (C, σ0, σ1, σ2) be a Dress–surface. Its geodesic dual is the
Dress–surface (C, σ0, σ1, σ0σ2) and denoted by S#.

Remark 9.1.2. Let S be a Dress–surface, then (S#)# = S, justifying the name duality.

The geodesic dual of a Dress–surface can have very different properties than the orig-
inal surface.

Example 9.1.3. The geodesic dual of the tetrahedron in Section 2.6 is a projective
plane, illustrated in Figure 9.1.

Given a notion of duality, a common approach is to analyse self–dual objects. Here,
we search for surfaces S that are isomorphic to their geodesic dual S#.

Definition 9.1.4. Let (C, σ0, σ1, σ2) be a Dress–surface. It is called geodesic self–dual
if it is isomorphic to its geodesic dual (C, σ0, σ1, σ0σ2).
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Figure 9.1: Geodesic dual of the tetrahedron

9.2 Geometric interpretation of geodesic duality

Definition 9.1.1 of geodesic duality in Section 9.1 seems very ungeometric. But, as the
name suggests, there is a deeper geometric meaning there. Fix a chamber c ∈ C and
compare the actions of 〈σ1σ2〉 and 〈σ1σ0σ2〉 on c. Clearly, 〈σ1σ2〉.c ⊆ 〈σ1, σ2〉.c, so each
orbit of 〈σ1σ2〉 belongs to a unique vertex (compare Definition 2.6.3). If we consider the
faces belonging to the chambers in 〈σ1σ2〉.c, we obtain all faces “around” a vertex – an
umbrella. (illustrated in Figure 9.2).

The geometric meaning of 〈σ1σ0σ2〉.c is not that easily apparent. Drawing the faces
corresponding to the chambers in that orbit forms a “straight” strip of triangles (compare
Figure 9.3). On a purely combinatorial level, these strips come closest to the notion of
“straight lines”. Therefore, we call these sets of faces geodesics.

Since geodesic duality exchanges the orbits 〈σ1σ2〉.c and 〈σ1σ0σ2〉.c, it also exchanges
umbrellas and geodesics in a surface. Heuristically, umbrellas are a local structure (to
change an umbrella, you have to change the vertex it corresponds to or one of those
adjacent to it), but geodesics show a global behaviour (if any vertex is modified, the set
of geodesics may change drastically).

Therefore, geodesic duality seems to exchange some local and global properties in a
given surface (and constructs a surface with inverted properties in the process). Since
it relates very different surfaces (like tetrahedron and projective plane), one might hope
to gain insight into one by analysing the other.

We mention in passing that the “zigzag–path” within a geodesic is sometimes referred
to as Petrie–polygon (compare [24]).
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Figure 9.2: An umbrella
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Figure 9.3: A geodesic

9.3 Geodesic triangle groups
In Subsection 4.3.2, we constructed a correspondence between degree–d–surfaces and
certain subgroups of triangle groups, called surface subgroups (Definition 4.3.12).

In this section, we further restrict to geodesic self–dual degree–d–surfaces and charac-
terise which surface subgroups correspond to them.

Lemma 9.3.1. Let U ≤ Td be a surface subgroup such that (Td/U, a, b, c) is a geodesic
self–dual degree–d–surface. The normal closure 〈〈(bac)d〉〉 is contained in U .

Proof. (bc)d acts trivially on each coset gU (for g ∈ Td). By self–duality, (bac)d also acts
trivially on gU . In other words, (bac)dgU = gU , or g−1(bac)dg ∈ U for all g ∈ Td.

Since the normal subgroup 〈〈(bac)d〉〉 is always contained in surface subgroups of
geodesic self–dual degree–d–surfaces, we can factor it out.

Definition 9.3.2. For every d ∈ N, the geodesic triangle group is defined as

Hd := 〈a, b, c | a2, b2, c2, (ab)3, (ac)2, (bc)d, (bac)d〉. (9.1)
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These groups were considered in greater generality in [24, Subsection 8.6]. In our
language, they did not enforce geodesic self–duality, and their notation for Hd is {d, 3}d.
They analysed a few of these groups but did not attempt a classification.

Remark 9.3.3. There is a lattice isomorphism {〈〈(bac)d〉〉 ≤ U ≤ Td} → {V ≤
Hd}. Since 〈〈(bac)d〉〉 acts trivially on Td/U , it is sufficient to consider the action of
Td/〈〈(bac)d〉〉 on Td/U . This action is equivariant to the action of Hd on Hd/V (with
V = U/〈〈(bac)d〉〉). Therefore, (Td/U, a, b, c) and (Hd/V, a, b, c) describe the same degree–
d–surface.

Geodesic duality can be formulated on the level of surface subgroups.

Definition 9.3.4. The geodesic automorphism # : Hd → Hd, is defined by

a 7→ a b 7→ b c 7→ ac.

For g ∈ Hd and V ≤ Hd, we employ the notation g# := #(g) and V # := {g# | g ∈ V }.

Well–defined. Let F be the free group generated by ā, b̄, and c̄. Then

#̄ : F → Hd, ā 7→ a, b̄ 7→ b, c̄ 7→ ac

is a well–defined group homomorphism. We consider its kernel. Since #̄(ā) = a and
#̄(b̄) = b, we immediately get 〈〈ā2, b̄2, (āb̄)3〉〉 ≤ ker #̄.
c̄2 and (āc̄)2 are mapped to (ac)2 = 1 and c2 = 1, so both lie in the kernel of #̄. An

analogous argument shows that (b̄c̄)d and (b̄āc̄)d lie in ker #̄. Thus, #̄ factors over the
normal subgroup generated by these relations (which gives #).

The geodesic automorphism allows us to transfer the notion of geodesic duality from
the level of Dress–surfaces to the subgroups of the geodesic triangle group.

Proposition 9.3.5. Let V ≤ Hd such that S = (Hd/V, a, b, c) is a degree–d–surface.
Then its geodesic dual is given by (Hd/V

#, a, b, c).
In particular, S is geodesic self–dual if and only if V # is conjugate to V in Hd.

Proof. The geodesic dual of S is (Hd/V, a, b, ac). This corresponds to the action of Hd

on the cosets of V in Hd via

ϕ : Hd ×Hd/V → Hd/V, (h, tV ) 7→ h#tV.

We want to show that this action is equivariant to

ψ : Hd ×Hd/V
# → Hd/V

#, (h, tV #) 7→ htV #.

Since # is an automorphism of Hd, we have a bijection

# : Hd/V → Hd/V
#, tV 7→ t#V #.

By Definition 4.3.4, we have to show that ϕ(h, tV )# = ψ(h, (tV )#):

ϕ(h, tV )# = (h#tV )# = h(tV )# = ψ(h, (tV )#).

Therefore, the geodesic dual is given by (Hd/V
#, a, b, c). This degree–d–surface is iso-

morphic to (Hd/V, a, b, c) if and only if V # and V are conjugate in Hd.
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Finally, we can characterise self–dual degree–d–surfaces group–theoretically.

Corollary 9.3.6. Let U ≤ Td. Then, (Td/U, a, b, c) is a geodesic self–dual degree–d–
surface if and only if

• gUg−1 ∩X = {1} for all g ∈ Td and X ∈ {〈a, b〉, 〈a, c〉, 〈b, c〉}.

• 〈〈(bac)d〉〉 ≤ U .

• (U/〈〈(bac)d〉〉)# is conjugate to U/〈〈(bac)d〉〉 in Hd.

Furthermore, every geodesic self–dual degree–d–surface has this form.

Proof. From Corollary 4.3.11 and Definition 4.3.12 we deduce that every degree–d–
surface corresponds to a surface subgroup U ≤ Td and can be represented as S =
(Td/U, a, b, c). Surface subgroups are characterised in Lemma 4.3.14. This gives the first
condition of the statement.

If S is geodesic self–dual, Lemma 9.3.1 gives the necessary condition 〈〈(bac)d〉〉 ≤ U .
This condition allows the reduction to V := U/〈〈(bac)d〉〉 in Hd by Remark 9.3.3.

Then, Proposition 9.3.5 gives the final condition of the statement.

Since every element of the dihedral group 〈x, y | x2, y2, (xy)k〉 is conjugate to x, y or
(xy)m (with m dividing k), we can replace the sets X from Corollary 9.3.6 by

X ∈ {〈a〉, 〈b〉, 〈c〉, 〈ab〉, 〈ac〉, 〈bc〉}. (9.2)

9.4 Reduction to geodesic triangle groups
Corollary 9.3.6 characterises geodesic self–dual degree–d–surfaces by considering both
groups, Td and Hd. We would like to have a characterisation in which only Hd appears,
since Hd is often smaller than Td.

Remark 9.4.1. The groups Td and Hd have the following orders:

d 1 2 3 4 5 6 7 8 9 ≥ 10
|Td| 2 12 24 48 120 ∞ ∞ ∞ ∞ ∞
|Hd| 1 4 1 4 60 108 1 672 3420 ∞

Proof. The finiteness results can be calculated very easily in GAP ([33]). They can also
be found in [24, Table 8], if one uses the notation Hd = {d, 3}d.

For Hd, Edjvet and Juhász show all of the results in [30]. In comparison to our
notation, the roles of b and c are interchanged. Therefore, the parameters in their paper
are set as follows: m := 3 and n = p := d.

We conclude that there are no geodesic self–dual degree–d–surfaces for d ∈ {3, 4, 7}.

Corollary 9.4.2. Let U ≤ Td and 〈〈(bac)d〉〉 ∩ 〈bc〉 6= {1}. Then, (Td/U, a, b, c) is not a
geodesic self–dual degree–d–surface.

In particular, there is no geodesic self–dual degree–d–surface for d ∈ {3, 4, 7}.
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Proof. If (Td/U, a, b, c) was a geodesic self–dual degree–d–surface, Lemma 9.3.1 would
give 〈〈(bac)d〉〉 ≤ U . But U ∩ 〈bc〉 ≥ 〈〈(bac)d〉〉 ∩ 〈bc〉 6= {1}, which contradicts the
characterisation of surface subgroups in Lemma 4.3.14.

Since H3 = H7 = {1}, we have 〈〈(bac)d〉〉 = Td in these cases. For H4, it can be checked
(either with GAP or with a calculation like in [15, Section 3.3]) that c(bac)4cb(bac)4b =
(cb)2. Explicitly:

c(bac)4cb(bac)4b = c(bac)3baccbbac(bac)3b

= c(bac)2bacbaacbac(bac)2b

= c(bac)2bacbcbca(bac)2b

= c(bac)1bacbabcbabac(bac)1b

= c(bac)1bacabacabaac(bac)1b

= cbacbcbcbcbacb

= cbaacb

= (cb)2

We would like to replace gUg−1∩X = {1} for g ∈ Td by gV g−1∩X = {1} for g ∈ Hd.

Lemma 9.4.3. Let G be a group, W,X ≤ G and N E G with N ≤W and X∩N = {1}.
Then W ∩X ∼= W/N ∩XN/N .

Proof. The result follows from the homomorphism theorems:

W ∩X ∼= (W ∩X)/(W ∩X ∩N) ∼= (W ∩X)N/N
= WN/N ∩XN/N = W/N ∩XN/N.

To apply this lemma to G = Td, W = gUg−1, X = X, and N = 〈〈(bac)d〉〉, we need to
show that 〈〈(bac)d〉〉 ∩X = {1} for all X from Equation (9.2). This is easy for X 6= 〈bc〉.

Lemma 9.4.4. 〈〈(bac)d〉〉 ∩ X = {1} for X ∈ {〈a〉, 〈b〉, 〈c〉, 〈ab〉, 〈ac〉} and d ≥ 5 with
d 6= 7.

Proof. If a ∈ 〈〈(bac)d〉〉, we also have 〈〈a〉〉 ≤ 〈〈(bac)d〉〉. In particular,

Hd
∼= Td/〈〈(bac)d〉〉 ∼= (Td/〈〈a〉〉)/(〈〈(bac)d〉〉/〈〈a〉〉).

Since Td/〈〈a〉〉 = 〈b, c | b2, c2, (bc)d〉 is a dihedral group of order 2d, we conclude |Hd| < 2d.
By Remark 9.4.1, this cannot happen for d ≥ 5 and d 6= 7. Similar arguments apply to
b and c. We can apply the same argument to ab and ac. We get Td/〈〈ab〉〉 ∼= D4 and
Td/〈〈ac〉〉 ∼= D6, so 〈〈(bac)d〉〉 ∩ 〈ab〉 and 〈〈(bac)d〉〉 ∩ 〈ac〉 are trivial as well.

At this point, we can reformulate the characterisation from Corollary 9.3.6.

Corollary 9.4.5. Let V ≤ Hd with d ≥ 5 and d 6= 7. Then, (Hd/V, a, b, c) is a geodesic
self–dual degree–d–surface if and only if
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• gV g−1 ∩X = {1} for X ∈ {〈a〉, 〈c〉, 〈ab〉, 〈ac〉, 〈bc〉} and all g ∈ Hd.

• V # is conjugate to V .

• 〈〈(bac)d〉〉 ∩ 〈bc〉 = {1} in Td.

Furthermore, every geodesic self–dual degree–d–surface has this form.

Proof. Let (Hd/V, a, b, c) be geodesic self–dual degree–d–surface. Then, there is a surface
subgroup U ≤ Td with U/〈〈(bac)d〉〉 = V . By Corollary 9.3.6, gUg−1 ∩X = {1} for all
X in the list (9.2). By assumption and Lemma 9.4.4, we can apply Lemma 9.4.3 to
conclude gV g−1 ∩X = {1}.

Conversely, there is an U ≤ Td with U/〈〈(bac)d〉〉 = V . Since (ab)a(ab)−1 = b, we also
have gV g−1 ∩ 〈b〉 = {1}. Since V ∩ 〈ac〉 ∼= (V ∩ 〈ac〉)# = V # ∩ 〈c〉 = hV h−1 ∩ 〈c〉, for
some h ∈ Hd, this intersection is also trivial. Applying Lemma 9.4.3 shows that the
conditions of Corollary 9.3.6 are fulfilled.

9.5 Uncollapsed geodesic triangle groups
The characterisation of geodesic self–dual degree–d–surfaces in Corollary 9.4.5 contains
the assumption 〈〈(bac)d〉〉 ∩ 〈bc〉 = {1}. In this section, we show that this condition is
not necessary. We start by rewriting it.

Remark 9.5.1. Since # is an automorphism of Hd, (bc)k = 1 if and only if (bac)k = 1.

Lemma 9.5.2. In the triangle group Td, we have 〈〈(bac)d〉〉∩〈bc〉 = 〈(bc)k〉 for 1 ≤ k ≤ d
if and only if Hd = Hk.

Proof. Suppose first that 〈〈(bac)d〉〉 ∩ 〈bc〉 = 〈(bc)k〉. Clearly, k divides d. Then:

Hd = Td/〈〈(bac)d〉〉
= Td/〈〈(bc)k, (bac)d〉〉
= 〈a, b, c | a2, b2, c2, (ab)3, (ac)2, (bc)d, (bc)k, (bac)d〉
= 〈a, b, c | a2, b2, c2, (ab)3, (ac)2, (bc)k, (bac)d〉.

Since (bc)k = 1, Remark 9.5.1 implies (bac)k = 1 as well.
For the other direction, we note that Td 6= Tk since the factor groups with respect to
〈〈a〉〉 are dihedral groups of different orders. Therefore, Hd = Hk implies that (bc)k ∈
〈〈(bac)d〉〉 and (bac)k ∈ 〈〈(bac)d〉〉.

This motivates the following definition.

Definition 9.5.3. Hd is uncollapsed if Hd 6= Hk for all 1 ≤ k ≤ d.

We want to show that Hd is uncollapsed if d ≥ 5 and d 6= 7.

Lemma 9.5.4. Hd is uncollapsed if and only if H d
p
6= Hd for all primes p dividing d.
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Proof. If Hk = Hd with d
k not prime, there is a prime p dividing this fraction, such that

H d
p

= Hd/〈〈(bc)
d
p , (bac)

d
p 〉〉 = Hk/〈〈(bc)

d
p , (bac)

d
p 〉〉 = Hk = Hd.

Corollary 9.5.5. Let p 6∈ {3, 7} be a prime. Then Hp is uncollapsed. Furthermore, Hd

is uncollapsed for d ∈ {2, 6, 12, 15, 21, 35, 49}.

Proof. Apply Lemma 9.5.4. We have {1} = H1 = Hp if and only if p ∈ {3, 7}.
If Hd is finite, we can inspect the table from Remark 9.4.1 to see whether it is uncol-

lapsed. If Hd is infinite, but for every prime p dividing d, the group H d
p

is finite, then
Hd has to be uncollapsed.

Lemma 9.5.6. Let p be an odd prime. Then H2p is uncollapsed.

Proof. By Lemma 9.5.4, we only need to consider H2 and Hp. By Remark 9.4.1, |H2p| 6=
2.

Consider the map Hd → {±1} that maps a, b, and c all to −1. It is only well–defined
for even d, thus H2p 6= Hp.

Theorem 9.5.7. H2n is uncollapsed (n ≥ 3). H3n is uncollapsed (n ≥ 2). H5n is
uncollapsed (n ≥ 1).

Proof. This can be shown by a lengthy calculation1 in GAP ([33]). We compute a
presentation of the subgroups 〈〈(bac)8〉〉 ≤ H2n , 〈〈(bac)9〉〉 ≤ H3n , and 〈〈(bac)5〉〉 ≤ H5n ,
by using the subgroup presentation algorithm in [37, Section 2.5]. Then, we calculate
the abelian invariants of this subgroups to distinguish the groups.

Formally, we want to construct a presentation for Npk := 〈〈(bac)pk〉〉 in Hpn (pk ∈
{23, 32, 51}) and compute the derived subgroup of Np. Our notation for the subgroup
presentation algorithm follows the Handbook of Computational Group Theory [37].

Since we have to perform the algorithm partially by hand, we start with defining some
preliminary algorithms:

# Given a homomorphism from a free group into a factor group,
# compute the Schreier transversal of its kernel
SchreierTransversal := function( hom )

local trans, todo, imageList, gens, word, g, free;

free := Source(hom);
trans := [];
todo := [ One(free) ];
gens := GeneratorsOfGroup(free);
imageList := [];
while not IsEmpty(todo) do;

word := Remove(todo, 1);
1Code: https://markusbaumeister.github.io/code/UncollapsedGeodesicTriangleGroups.g.
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# Check if this element already was found
if not Image(hom, word) in imageList then

Add(trans, word);
Add(imageList, Image(hom, word));
for g in gens do

Add(todo, word*g);
od;

fi;
od;

return trans;
end;

# Given an element in the free group, the homomorphism into
# a factor group and the transversal of the kernel, return
# the representative of the element in the transversal
SchreierRep := function( el, hom, transversal )

local test;

for test in transversal do
if Image(hom, test) = Image(hom, el) then

return test;
fi;

od;

Error("No representative found.");
end;

# Given a homomorphism, a transversal of its kernel and two
# elements t,x, compute their Schreier generator
SchreierGenerator := function( hom, transversal, t, x )

return t * x * SchreierRep( t*x, hom, transversal )ˆ(-1);
end;

We set the prime numbers by choosing one of these three options:

# p := 2; pk := pˆ3;
# p := 3; pk := pˆ2;
# p := 5; pk := pˆ1;

Our approach makes use of the following epimorphisms:

〈a, b, c〉 → 〈a, b, c|a2, b2, c2, (ab)3, (ac)2〉 → Hpn

F := FreeGroup( "a", "b", "c" );
generalRel := [ F.aˆ2, F.bˆ2, F.cˆ2, (F.a*F.c)ˆ2, (F.a*F.b)ˆ3 ];
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Hgen := F/generalRel;
# Map from F to Hgen
homGen := GroupHomomorphismByImages( F, Hgen,

[F.a,F.b,F.c], [Hgen.1,Hgen.2,Hgen.3]);

In particular, we can consider Hpk as a factor group of 〈a, b, c|a2, b2, c2, (ab)3, (ac)2〉.

Ngen := NormalClosure( Hgen,
Group([ (Hgen.2*Hgen.3)ˆpk, (Hgen.2*Hgen.1*Hgen.3)ˆpk ]) );

# Map from Hgen to N_{pˆk}
homNgen := NaturalHomomorphismByNormalSubgroup(Hgen, Ngen);
# Map from F to N_{pˆk}
homNinfree := CompositionMapping2( homNgen, homGen );
Hpk := Image(homNgen);

The Schreier–transversal has to be computed with respect to the free group.

transversal := SchreierTransversal( homNinfree );

For the Schreier–transversal T and the generators X = {a, b, c}, we have to compute the
Schreier–generators

{txtx−1|t ∈ T, x ∈ X, tx 6=〈a,b,c〉 tx}

Computationally, we store them as triples (t, x, txtx−1).

schreierGens := [];
for t in transversal do

for x in [F.a,F.b,F.c] do
Add(schreierGens,

[t,x,SchreierGenerator(homNinfree, transversal, t,x)]);
od;

od;

The Schreier–generators Y generate Npk . By [37, Theorem 2.62], Npk
∼= 〈Y |S〉 with

S = {ρ(twt( − 1))|t ∈ T,w ∈ R} (here, R are the relations of Hpn and ρ rewrites into
the Schreier–generators Y ).

We split the relations R into two sets: the general relations {a2, b2, c2, (ab)3, (ac)2}
and the prime–specific relations {(bc)pn , (bac)pn}. First, we rewrite the general relations
in the Schreier–generators.

simpleRelations := [];
for rel in generalRel do

for t in transversal do
Add( simpleRelations, t*rel*tˆ(-1) );

od;
od;

# Rewrite the simple relations in the Schreier-generators
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subgroup := Group( List(schreierGens, i->i[3]) );
rewriteHom := EpimorphismFromFreeGroup( subgroup );
G := Source(rewriteHom);

newRels := [];
for i in [1..Length(schreierGens)] do

if schreierGens[i][3] = Identity(F) then
Add(newRels, G.(i));

fi;
od;
for rel in simpleRelations do

Add(newRels, PreImagesRepresentative(rewriteHom, rel));
od;

At this point, there are a lot of generators and a lot of relations. We simplify the
presentation 〈Y |Sgen〉.

pres := PresentationFpGroup(G/newRels);
TzGoGo(pres);

For all p ∈ {2, 3, 5}, this results in a free group without relations. Furthermore, its
generators are a subset of the Schreier–generators. We use a little hack to obtain this
subset.

remainingIndices := [];
for gen in GeneratorsOfPresentation(pres) do

# This is a hack to obtain the number of the generator
str := ShallowCopy( String(gen) );
Remove(str,1);
pos := Int(str);
Add( remainingIndices, pos );

od;

To rewrite the prime–specific relations, we want to use only this restricted subset of
Schreier–generators. We need another rewrite homomorphism.

minSubgroup := Group( List( remainingIndices,
i -> Image(homGen, schreierGens[i][3]) ) ); # subgroup of Hgen

minRewriteHom := EpimorphismFromFreeGroup( minSubgroup );
a := Hgen.1;
b := Hgen.2;
c := Hgen.3;

At this point, we face a problem: t(bc)pnt−1 can’t be rewritten for general n. Fortunately,
this is not necessary. We can reformulate

t(bc)pnt−1 = (t(bc)pkt−1)pn−k .
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Then it is sufficient to rewrite t(bc)pkt−1.

bcList := List( transversal,
t -> Image(homGen, t)ˆ(-1) * (b*c)ˆpk * Image(homGen, t) );

bacList := List( transversal,
t -> Image(homGen, t)ˆ(-1) * (b*a*c)ˆpk * Image(homGen, t) );

paramRels := Set(Concatenation(bcList, bacList));

trueRels := List(paramRels,
rel -> PreImagesRepresentative(minRewriteHom, rel));

minRels := [];
for t in trueRels do

found := false;
for m in minRels do

if t = m or t = mˆ(-1) then
found := true;

fi;
od;
if not found then

Add(minRels, t);
fi;

od;

Each element r of minRels corresponds to the relation rp
n−k .

Without further simplification of the presentation we compute the abelian invariants
of Npk . By [37, Section 9.2], we can compute these invariants by writing the relations
into a matrix (additively) and computing the Hermite normal form. Since all relations
have the same exponent, we can rewrite this matrix as pn−kM , where M is the matrix
formed from all r in minRels.

In particular, it is sufficient to compute the abelian invariants of 〈Y |Sgen, minRelsp〉
and show that these are not all 0.

coreQuotient := Source(minRewriteHom)/List(minRels, r -> rˆp);
AbelianInvariants(coreQuotient);

For p = 5, the largest abelian factor group is C6
5 , for p = 3 it is C286

3 and for p = 2 it is
C57

2 .

9.5.1 Voltage assignments

In Section 9.5 we introduced the notion of uncollapsed to capture a necessary condition
for the characterisation of geodesic self–dual surface in Corollary 9.4.5.

In this subsection, we show that Hpn and H4p are uncollapsed. To achieve this, we use
corner voltage assignments to construct appropriate surface coverings. The presentation
of this theory follows [3].
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Definition 9.5.8. Let (C, σ0, σ1, σ2) be a Dress–surface and B be a group. A map
v : C → B is called corner voltage assignment, if v(σ1.c) = v(c)−1 holds for all
c ∈ C. In this scenario, B is called the voltage group.

The formalism of voltage assignments is very effective to construct covering surfaces.

Definition 9.5.9. Let (C, σ0, σ1, σ2) be a Dress–surface with corner voltage assignment
v : C → B. The lift of (C, σ0, σ1, σ2) with respect to v is the quadruple (C×B, σ̂0, σ̂1, σ̂2),
with

σ̂0.(c, g) := (σ0.c, g), σ̂1.(c, g) := (σ1.c, v(c)g), σ̂2.(c, g) := (σ2.c, g),

In general, the lift does not define a surface in the sense of Definition 2.6.1 and
Definition 4.3.1. There are two possible reasons: The orbits of 〈σ̂0, σ̂1〉 might have
an order larger than 3, and the group 〈σ̂0, σ̂1, σ̂2〉 might not act transitively on C × B.
The transitivity can be achieved by restriction to a single orbit.

The orbit lengths of 〈σ̂0, σ̂1〉 can be controlled by an additional condition.

Remark 9.5.10. Let (C, σ0, σ1, σ2) be a surface with corner voltage assignment v : C →
B and lift (C ×B, σ̂0, σ̂1, σ̂2). Then,

1. σ̂0, σ̂1, and σ̂2 are involutions without fixed points on C ×B.

2. 〈σ̂0, σ̂1, σ̂2〉 acts transitively on each of its orbits.

3. σ̂0σ̂1 consists only of 3–cycles if and only if v(σ1σ0.c)v(σ0σ1.c)v(c) = 1 for all
c ∈ C.

4. σ̂0σ̂2 consists only of 2–cycles.

Proof. Most properties follow from the corresponding properties for surfaces (compare
Definition 2.6.1 and Definition 4.3.1). We compute (σ̂0σ̂1)3.(c, g) for (c, g) ∈ C ×B:

(σ̂0σ̂1)2.(σ0σ1c, v(c)g) = (σ̂0σ̂1).(σ̂1σ̂0c, v(σ0σ1.c)v(c)g) = (c, v(σ1σ0.c)v(σ0σ1.c)v(c)g)

Therefore, the product condition is equivalent to (σ̂0σ̂1)3 = 1. If there is an element
(c, g) that does not lie in a 3–cycle of σ̂0σ̂1, it has to be fixed by it. But then, c would
have to be fixed by σ0σ1, contradicting that we started with a Dress–surface.

Before we can construct appropriate lifts, we need to prove a few technical lemmas.

Lemma 9.5.11. Let Hd be infinite. Then, there is no k with gcd(k, d) = 1 such that
(bc)k ∈ 〈a, b〉 or (bac)k ∈ 〈a, b〉.

Proof. Without loss of generality, only consider bc. Since (bc)d = 1, we can apply the
Euclidean algorithm to deduce bc ∈ 〈a, b〉. A short computation in GAP ([33]) shows
that Hd has to be finite in this case.

Lemma 9.5.12. Let p ≥ 5 be a prime and Hpn be infinite and uncollapsed. If either
(bc)k ∈ 〈a, b〉 or (bac)k ∈ 〈a, b〉 holds, then k is a multiple of pn.
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Proof. By Lemma 9.5.11, k cannot be coprime to pn. If k is not a multiple of pn, we can
reduce to the case k = pm with 0 < m < n. In this case, 1 = (bc)pn = ((bc)pm)pn−m =
xp

n−m for some x ∈ 〈a, b〉.
Since p ≥ 5, the element x cannot have order 2 or 3. The only remaining element in
〈a, b〉 is 1. But x = 1 would imply Hpn = Hpm (by Remark 9.5.1), contradicting Hpn

being uncollapsed.

Lemma 9.5.13. Let p be a prime and H2p be infinite and uncollapsed. If either (bc)k ∈
〈a, b〉 or (bac)k ∈ 〈a, b〉 holds, then k is a multiple of 2p.

Proof. By Lemma 9.5.11, k cannot be coprime to 2p. If k is not a multiple of 2p, we can
reduce to the cases k = 2 or k = p. For k = 2, it is easy to check with GAP ([33]) that
every case of (bc)2 ∈ 〈a, b〉 implies the finiteness of H2p.

For k = p, we have 1 = (bc)2p = ((bc)p)2. Therefore, (bc)p = 1 or has order 2. The first
case is impossible since H2p is uncollapsed. The second one implies (bc)p ∈ {a, b, aba}.
To analyse these cases, we use the equality (bc)pb(bc)p = b(cb)p(bc)p = b:

(bc)p = a implies 1 = (ab)3 = ((bc)pb)3 = b2(bc)pb = ab,

(bc)p = aba implies 1 = (ab)3 = (bc)pb(bc)pa = ba.

In this case, Hd is finite. From (bc)p = b we can deduce (bc)p−1 = c, from which
(bc)p−2 = b follows. Inductively, either b = 1 or c = 1 holds, then H2p is finite.

Proposition 9.5.14. Let Hd be uncollapsed such that (bc)k ∈ 〈a, b〉 or (bac)k ∈ 〈a, b, 〉
is only possible if k is a multiple of d. For any prime p, there exists a degree–dp–surface
(D, σ̂0, σ̂1, σ̂2) such that σ̂1σ̂0σ̂2 consists only of dp-cycles. In particular, Hd 6= Hdp.

Proof. To construct the surface, we start with the geodesic self–dual degree–d–surface
(Hd/{1}, a, b, c). Let F be the set of 〈a, b〉–orbits (the faces). Choose one element f
from each orbit to represent the orbit as 〈a, b〉.f . Define the voltage group

B :=
{

(Z/pZ)F p 6= 2
(V4)F p = 2, with V4 = 〈s, t | s2, t2, (st)2〉

and the corner voltage assignment v as follows: v(x) only has a non–trivial value in
the component 〈a, b〉.fx, where x ∈ 〈a, b〉.fx. For the elements of this orbit, its value is
defined as

fx 7→ 1 ab.fx 7→ 1 abab.fx 7→ p− 2
b.fx 7→ p− 1 bab.fx 7→ p− 1 babab.fx 7→ 2

for odd p and as

fx 7→ s ab.fx 7→ t abab.fx 7→ st

b.fx 7→ s bab.fx 7→ t babab.fx 7→ st
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for p = 2. By Remark 9.5.10, the lift via v produces a surface (D, σ̂0, σ̂1, σ̂2) (after
restriction to one orbit of 〈σ̂0, σ̂1, σ̂2〉 on Hd/{1} ×B).

We compute the cycle lengths of σ̂1σ̂2 (umbrellas) and σ̂1σ̂0σ̂2 (geodesics). Since the
argument for them is similar, we only give the case for σ̂1σ̂2.

Let f̂ = (x, g) ∈ D ⊆ Hd/{1}×B. If 〈a, b〉.(bc)kx = 〈a, b〉.x, we conclude (bc)k ∈ 〈a, b〉.
By assumption, this is only possible if k is a multiple of d. In particular, (σ̂1σ̂2)d.f̂ =
(x,wg), with w ∈ B such that w has a non–trivial entry at each (σ̂1σ̂2)k.x (for 0 ≤ k < d).
By the previous analysis, these positions are all distinct. Since all non–trivial elements
in Z/pZ have order p and all non–trivial elements in V4 have order 2, the order of σ̂1σ̂2
is dp.

To show the additional claim, observe that Tdp acts transitively on D (Remark 4.3.10).
The element (bac)dp ∈ Tdp acts trivially, thus Hdp = Tdp/〈〈(bac)dp〉〉 also acts transitively
on G. But the bac–orbits of Hd have maximal length d, so Hd 6= Hdp.

Proposition 9.5.15. Hpn is uncollapsed for p > 3 prime and n > 1.

Proof. We show the claim by induction. By Corollary 9.5.5, H25 andH49 are uncollapsed,
together with all Hp with p > 10 prime. Also, all of them are infinite by Remark 9.4.1
and satisfy the assumption of proposition 9.5.14 by Lemma 9.5.12.

Proposition 9.5.16. H4p is uncollapsed for all odd primes p > 3.

Proof. By Lemma 9.5.4, we only have to consider H4 and H2p. From Remark 9.4.1,
clearly H4 6= H4p. Further, H2p is infinite (p > 3), uncollapsed (Lemma 9.5.6) and fulfils
the assumption of Proposition 9.5.14 (Lemma 9.5.13).

9.5.2 Uncollapsed induction

In Subsection 9.5.1, we showed that several classes of geodesic triangle groups are un-
collapsed. In this subsection, we combine these results to show that almost all geodesic
triangle groups are uncollapsed. The central observation is the following lemma:

Lemma 9.5.17. Let d = k · p for a prime p such that there is a z | k with p - z. Then,
Hd = Hk implies H d

z
= H k

z
.

Proof. Clearly, k
z | gcd(k, kpz ). If pn | k, then pn+1 | kpz , since p - z. Therefore, k

z =
gcd(k, kpz ) and we have H d

z
= Hd/〈〈(bc)

d
z , (bac)

d
z 〉〉 = Hk/〈〈(bc)

d
z , (bac)

d
z 〉〉 = H k

z
.

Theorem 9.5.18. Hd is uncollapsed for all d ≥ 5 with d 6= 7.

Proof. Assume Hd is a counterexample. By Lemma 9.5.4, there is a prime p with
d = pn+1z with n ≥ 0 and p - z, such that Hpnz = Hd.

By Lemma 9.5.17, this implies Hpn = Hpn+1 . We distinguish several cases:

• p = 2: By Theorem 9.5.7, this is only possible if n ∈ {0, 1}. Corollary 9.5.5 restricts
this further to n = 1.
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• p = 3: By Theorem 9.5.7, this is only possible for n = 0.

• p = 7: By Proposition 9.5.15, this is only possible for n = 0.

• In all other cases, the combination of Theorem 9.5.7, Proposition 9.5.15 and Corol-
lary 9.5.5 makes this situation impossible.

For the three remaining cases, we apply Lemma 9.5.17 to d = pn+1z in a different way:
Let q be a prime dividing z. Then we can use Lemma 9.5.17 to divide by z

q . This gives
the three cases H4q = H2q, H3q = Hq, and H7q = Hq.

The first one is impossible by Proposition 9.5.16 (for p > 3) and Corollary 9.5.5 (for
p = 3). If q ∈ {3, 5, 7}, the impossibility of the other cases follow from Corollary 9.5.5.
Otherwise, Hq satisfies the assumptions of Proposition 9.5.14 (infinite by Remark 9.4.1,
so Lemma 9.5.12 holds).

9.6 Classification

In this section, we complete the proof of the main theorem. Afterwards, we give a
complete classification of all geodesic self–dual degree–d–surfaces for d < 10. Several of
these surfaces are also available in the GAP–package SimplicialSurfaces ([13]). In
these cases, we will also give the command to generate this particular surface.

Recall Definition 9.3.2 of the geodesic triangle group Hd and Definition 9.3.4 of the
geodesic automorphism # : Hd → Hd.

Theorem 9.6.1. Let V ≤ Hd with d ≥ 5 and d 6= 7. Then (Hd/V, a, b, c) is a geodesic
self–dual degree–d–surface if and only if

• g−1V g ∩X = {1} for X ∈ {〈a〉, 〈c〉, 〈ab〉, 〈ac〉, 〈bc〉} and all g ∈ Hd.

• V # is conjugate to V .

Furthermore, all geodesic self–dual degree–d–surfaces have this form.

Proof. This follows from Corollary 9.4.5 and Theorem 9.5.18, by using the reformulation
from Lemma 9.5.2 and Definition 9.5.3.

For d ∈ {5, 6, 8, 9}, the group Hd is finite, so we can use GAP ([33]) to compute all
geodesic self–dual degree–d–surfaces.

Example 9.6.2. For d = 5, there is only one geodesic self–dual surface, since only
the trivial subgroup {1} satisfies Theorem 9.6.1. This defines the projective plane on 10
triangles (6 vertices and 15 edges), shown in figure 9.4. The associated command in the
SimplicialSurfaces–package is AllGeodesicSelfDualSurfaces(10)[1].

Example 9.6.3. For d = 6, there are exactly two geodesic self–dual surfaces, since there
are exactly two surface subgroups satisfying Theorem 9.6.1 (both are tori):
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Figure 9.4: Geodesic self–dual degree–5–surface

1. The trivial subgroup {1}, defining a surface with 18 faces (9 vertices and 27 edges).
Its command is AllGeodesicSelfDualSurfaces(18)[1].

2. A normal subgroup of size 3, defining a surface with 6 faces (3 vertices and 9
edges). Its command is AllGeodesicSelfDualSurfaces(6)[1].
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Figure 9.5: Geodesic self–dual degree–6–surfaces

Example 9.6.4. For d = 8, there are exactly four geodesic self–dual surfaces, defined
by the four surface subgroups satisfying Theorem 9.6.1 (up to conjugation):

1. The trivial subgroup {1}, defining an orientable surface with 42 vertices, 168 edges,
and 112 faces (genus 8).
Its command is AllGeodesicSelfDualSurfaces(112)[1].

2. A normal subgroup of size 2, defining a non–orientable surface with 21 vertices,
84 edges, and 56 faces (genus 8).
Its command is AllGeodesicSelfDualSurfaces(56)[1].
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3. A subgroup of size 7 and index 96, defining an orientable surface with 6 vertices,
24 edges, and 16 faces (genus 2).

4. A subgroup of size 14 and index 48, defining a non–orientable surface with 3 ver-
tices, 12 edges, and 8 faces (genus 2).

Example 9.6.5. For d = 9, there are exactly three geodesic self–dual surfaces, defined
by the three surface subgroups satisfying Theorem 9.6.1 (up to conjugation):

1. The trivial subgroup {1}, defining a non–orientable surface with 190 vertices, 855
edges, and 570 faces (genus 96).
Its command is AllGeodesicSelfDualSurfaces(570)[1].

2. A group of size 5 with index 684, defining a non–orientable surface with 38 vertices,
171 edges, and 114 faces (genus 20).

3. A group of size 19 with index 180, defining a non–orientable surface with 10 ver-
tices, 45 edges, and 30 faces (genus 6).

At this point, we have classified all geodesic self–dual degree–d–surfaces for d < 10. For
d ≥ 10, the situation is unclear: We conjecture that there are infinitely many geodesic
self–dual surfaces for each d ≥ 10. This is based on the observation that our calculations
reached their computational limits before stopping to construct further examples.

Unfortunately, it is still unclear whether the geodesic surface subgroups of Hd for
d ≥ 10 can be characterised in a fashion that is more amenable to analysis.
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10 GAP–package SimplicialSurfaces

The chapters so far have been concerned with the theory of combinatorial surfaces. In
contrast, this chapter has a more practical flavour. It presents the GAP–package ([33])
SimplicialSurfaces ([13]), which performs computations with combinatorial surfaces.
It is co–authored with Alice Niemeyer, but the vast majority of design and implementa-
tion is part of this thesis. The aims of this package are threefold:

• Computing with the package is faster than computing by hand, which allows the
user to focus more on mathematical structure and less on menial computation.

• The package contains a wide variety of surfaces which can be used to test theories
against.

• The package makes it easier to implement custom code dealing with combinato-
rial surfaces and can be easily extended by someone interested in research about
combinatorial surfaces.

The functionality of the package is quite extensive, so this chapter does not detail
every single method (for that, we refer to the package documentation in [13]). Instead,
we focus on the general themes of the package.

In Section 10.1, we explore which concepts are implemented in the package and how
its notation relates that of this thesis. Section 10.2 presents several convenient features
of the package that are often useful in practice, including isomorphism testing, surface
drawing, and the surface library. Section 10.3 explores the flexible uses allowed by the
package. This is most important to those researchers whose research questions are not
covered by the pre–defined methods.

10.1 Notation and Usage

This section explains the notation for combinatorial surfaces that is used in the GAP–
package SimplicialSurfaces ([13]) and how it relates to the notation used in this
thesis.

Subsection 10.1.1 covers the methods to construct combinatorial surfaces and to access
their incidence structure. In Subsection 10.1.2, homomorphisms between combinatorial
surfaces are discussed, and Subsection 10.1.3 contains the different path–concepts. Some
basic properties of combinatorial surfaces are touched upon in Subsection 10.1.4 and the
final Subsection 10.1.5 deals with edge–colourings.
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10.1.1 Constructing complexes and surfaces
In this thesis, we developed three formalisms to capture the concept of combinatorial
surfaces: twisted polygonal complexes (Section 2.4), polygonal complexes (Section 2.5),
and Dress–surfaces (Section 2.6). The package SimplicialSurfaces primarily relies on
the concept of polygonal complexes and does not currently support twisted polygonal
complexes in an extended capacity. Furthermore, it contains methods to convert the
description of Dress–surfaces into polygonal surfaces.

A polygonal complex (compare Definition 2.5.2) is a quintuple (V,E, F, η, ϕ), where
V , E, and F are sets, and η : E → Pot2(V ) and ϕ : F → Pot(E) are maps satisfying
certain properties. In the package SimplicialSurfaces, they are represented as follows:
• The sets are represented by GAP–sets of positive integers.

• The map η is represented by a GAP–list L, where the i–th component is the GAP–set
formed from the elements in η(i) (we identify the elements of E with the entry
positions of L). This list can be accessed by the method VerticesOfEdges.

• The map ϕ is represented in the same way as η. This list can be accessed by the
method EdgesOfFaces.

Example 10.1.1. Consider the polygonal complex (V,E, F, η, ϕ), with

V = {1, 6, 7, 8, 9, 10}, E = {1, 2, 3, 4, 5, 6, 7, 8, 9}, F = {2, 3, 4, 5},

and

η : E → Pot2(V ) e 7→


{1, 5 + e} 1 ≤ e ≤ 2
{1, 6 + e} 3 ≤ e ≤ 4
{e+ 1, e+ 2} 5 ≤ e ≤ 8
{6, 10} e = 9,

ϕ : F → Pot(E) f 7→


{1, 2, 5} f = 2
{2, 3, 6, 7} f = 3
{3, 4, 8} f = 4
{1, 4, 9} f = 5,

illustrated by:
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In this case, the GAP–list VerticesOfEdges would be

gap> VofE := [ [1,6], [1,7], [1,9], [1,10],
> [6,7], [7,8], [8,9], [9,10], [6,10] ];;

(GAP–sets are stored as GAP–lists) and EdgesOfFaces would be

gap> EofF := [ , [1,2,5], [2,3,6,7], [3,4,8], [1,4,9] ];;

With these two lists, the polygonal complex (V,E, F, η, ϕ) can be constructed with the
method PolygonalComplexByDownwardIncidence:

gap> PolygonalComplexByDownwardIncidence( VofE, EofF );
polygonal surface (6 vertices, 9 edges, and 4 faces)

Example 10.1.1 shows the method PolygonalComplexByDownwardIncidence. There
is also a method PolygonalComplexByUpwardIncidence that uses the maps

η̄ : V → Pot(E) v 7→ {e ∈ E | v ∈ η(e)}
ϕ̄ : E → Pot(F ) e 7→ {f ∈ F | e ∈ ϕ(f)}.

Example 10.1.2. Let (V,E, F, η, ϕ) be the polygonal complex from Example 10.1.1. Let
η̄ : V → Pot(E), v 7→ {e ∈ E | v ∈ η(e)}, then

η̄(1) = {1, 2, 3, 4} η̄(6) = {1, 5, 9} η̄(7) = {2, 5, 6}
η̄(8) = {6, 7} η̄(9) = {3, 7, 8} η̄(10) = {4, 8, 9},

encoded as the GAP–list

gap> EofV := [ [1,2,3,4], , , , , [1,5,9],
> [2,5,6], [6,7], [3,7,8], [4,8,9] ];;

Let ϕ̄ : E → Pot(F ), e 7→ {f ∈ F | e ∈ ϕ(f)}, then

ϕ̄(e) =


{2, 5} e = 1
{e, e+ 1} 2 ≤ e ≤ 4
{e− 3} 5 ≤ e ≤ 6
{e− 4} 7 ≤ e ≤ 9,

encoded as the GAP–list

gap> FofE := [ [2,5], [2,3], [3,4], [4,5],
> [2], [3], [3], [4], [5] ];;

Then, (V,E, F, η, ϕ) can be constructed as follows:

gap> PolygonalComplexByUpwardIncidence( EofV, FofE );
polygonal surface (6 vertices, 9 edges, and 4 faces)
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If we only want to construct vertex–faithful polygonal complexes, the map η]ϕ is suf-
ficient (like in Lemma 2.7.5), with the method PolygonalComplexByVerticesInFaces.

Constructing the polygonal surface corresponding to the Dress–surface (C, a, b, c) is a
bit more involved. If the involutions are given as GAP–permutations, the following code
constructs the polygonal surface:

gap> tame := AllTameColouredSurfaces(a,b,c,[1,1,1])[1];;
gap> surf := IsomorphicFlagSurface(tame);;

If the Dress–surface cannot be represented by a polygonal surface, the method returns
false.

10.1.2 Homomorphisms
The package SimplicialSurfaces supports polygonal morphisms. By Definition 2.5.6,
a polygonal morphisms is a triple of maps (µV , µE , µF ) satisfying certain consistency
criteria.

Each of these maps can be represented by a GAP–list. Consider the map µV . If the
vertex sets only contain positive integers (by Subsection 10.1.1, this is fulfilled for the
polygonal complexes in the package), we can represent µV as a GAP–list, where the
position v contains the entry µV (v). In the same way, the maps µE and µF can be
encoded.

For example, the map

µV : {1, 2, 4, 6} → {1, 3, 5} v 7→


1 v ∈ {1, 4}
3 v = 2
5 v = 6

would be represented by the GAP–list [1, 3, , 1, , 5].
Currently, there are two ways to construct polygonal morphisms:

1. The method PolygonalMorphismByLists constructs a polygonal morphism be-
tween general polygonal complexes from three GAP–lists that correspond to the
maps µV , µE , and µF .

2. The method PolygonalMorphismByVertexImages constructs a polygonal mor-
phism between vertex–faithful polygonal complexes from the GAP–list correspond-
ing to the map µV .

10.1.3 Paths
The package SimplicialSurfaces implements vertex–edge–paths (Definition 5.2.10)
and edge–face–paths (Definition 2.5.17). Both can be constructed in different ways:

• The generic way to construct them is by giving a GAP–list whose entries alternate
between vertices and edges (or edges and faces). The methods are VertexEdgePath
and EdgeFacePath.
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• For vertex–edge–paths, we can also give a GAP–list with the sequence of vertices
(VertexEdgePathByVertices) or edges (VertexEdgePathByEdges). However, this
might not determine a vertex–edge–path uniquely. Then, the methods return one
of them

• Similarly, for edge–face–paths, we can give a GAP–list with the sequence of edges
(or faces). The method is EdgeFacePathByEdges (or EdgeFacePathByFaces).

To work with these paths one needs access to the vertices, edges, and faces contained in
them. These can be accessed by the methods VerticesAsList and EdgesAsList (for
vertex–edge–paths), as well as EdgesAsList and FacesAsList (for edge–face–paths).

Example 10.1.3. Let (V,E, F, η, ϕ) be the polygonal complex from Example 10.1.1,
illustrated by
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and defined by

gap> complex := PolygonalComplexByDownwardIncidence(
> [[1,6],[1,7],[1,9],[1,10],[6,7],[7,8],[8,9],[9,10],[6,10]],
> [,[1,2,5],[2,3,6,7],[3,4,8],[1,4,9]]);;

To construct the vertex–edge–path that moves along the boundary clockwise, we have
several options:

gap> genPath := VertexEdgePath(complex, [6,5,7,6,8,7,9,8,10,9,6]);
( v6, E5, v7, E6, v8, E7, v9, E8, v10, E9, v6 )
gap> vtxPath := VertexEdgePathByVertices(complex, [6,7,8,9,10,6]);
( v6, E5, v7, E6, v8, E7, v9, E8, v10, E9, v6 )
gap> edgePath := VertexEdgePathByEdges(complex, [5,6,7,8,9]);
( v6, E5, v7, E6, v8, E7, v9, E8, v10, E9, v6 )

We can access the included vertices and edges in the correct order:

gap> VerticesAsList(genPath);
[ 6, 7, 8, 9, 10, 6 ]
gap> EdgesAsList(genPath);
[ 5, 6, 7, 8, 9 ]
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Some of these paths are distinguished:

• A vertex–edge–path where all vertices and edges are incident to the same face is
called perimeter path. They can be constructed by PerimeterPathsOfFaces.

• It is possible to recognise whether an edge–face–path is an umbrella–path (compare
Definition 2.5.20). The umbrella partition from Lemma 2.5.24 can be computed
with UmbrellaPathPartitionOfVertices.

• In Chapter 9, the concept of geodesic paths is introduced. These are also included
in the package.

Example 10.1.4. Consider the polygonal complex (V,E, F, η, ϕ) from Example 10.1.1
and Example 10.1.3, defined by:

gap> complex := PolygonalComplexByDownwardIncidence(
> [[1,6],[1,7],[1,9],[1,10],[6,7],[7,8],[8,9],[9,10],[6,10]],
> [,[1,2,5],[2,3,6,7],[3,4,8],[1,4,9]]);;

We are interested in perimeter and umbrella paths.

gap> perims := PerimeterPathsOfFaces(complex);;
gap> perims[2];
( v1, E1, v6, E5, v7, E2, v1 )
gap> perims[3];
( v1, E2, v7, E6, v8, E7, v9, E3, v1 )

Next, we take a look at the umbrella paths.

gap> umbs := UmbrellaPathsOfVertices(complex);;
gap> umbs[1];
( e1, F2, e2, F3, e3, F4, e4, F5, e1 )
gap> umbs[6];
| e5, F2, e1, F5, e9 |

Note that the representation of the edge–face–paths already tells us whether it is closed
or not (compare Definition 2.5.17).

10.1.4 Basic properties
So far, this section explained definitions within the package SimplicialSurfaces. This
subsection collects some of the “basic” properties that are easy to calculate with the
package.

• We can compute the different vertex types from Definition 2.5.25 with the methods
InnerVertices, BoundaryVertices, RamifiedVertices, and ChaoticVertices.

• We can compute the different edge types from Definition 2.5.15 with the methods
InnerEdges, BoundaryEdges, RamifiedEdges, and ChaoticEdges.
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• The concepts connectivity and strong connectivity (from Section 5.2) can be com-
puted with the methods IsConnected and IsStronglyConnected.

• Section 5.3 introduced the concepts of orientation and dual orientation. Cur-
rently, only orientation is implemented and can be computed with the method
IsOrientable.

Example 10.1.5. Let (V,E, F, η, ϕ) be the polygonal complex from Example 10.1.1,
illustrated by
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and defined by

gap> complex := PolygonalComplexByDownwardIncidence(
> [[1,6],[1,7],[1,9],[1,10],[6,7],[7,8],[8,9],[9,10],[6,10]],
> [,[1,2,5],[2,3,6,7],[3,4,8],[1,4,9]]);;

We compute the types of its vertices and edges.

gap> InnerVertices(complex);
[ 1 ]
gap> BoundaryVertices(complex);
[ 6, 7, 8, 9, 10 ]
gap> InnerEdges(complex);
[ 1, 2, 3, 4 ]
gap> BoundaryEdges(complex);
[ 5, 6, 7, 8, 9 ]

Furthermore, it is orientable and strongly connected.

gap> IsStronglyConnected(complex);
true
gap> IsOrientable(complex);
true

In fact, the package can also provide the local orientation map (compare Definition 5.3.1).
It stores them as perimeter paths (compare Subsection 10.1.3). The vertex permutation
can be accessed by VerticesAsPerm.
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gap> orient := Orientation(complex);;
gap> VerticesAsPerm(orient[2]);
(1,6,7)
gap> VerticesAsPerm(orient[3]);
(1,7,8,9)
gap> List(orient, VerticesAsPerm);
[ , (1,6,7), (1,7,8,9), (1,9,10), (1,10,6) ]

10.1.5 Edge–colourings

The package SimplicialSurfaces supports edge–colourings (Subsection 3.3.1). They
are formed with the method EdgeColouredPolygonalComplex from a polygonal complex
and a map from edges to colours (positive integers), which we encode as a GAP–list, similar
to the encoding in Subsection 10.1.2. We can access this GAP–list by ColoursOfEdges.

Starting from general edge–colourings, the package also deals with some restricted
versions. Here, we focus on Grünbaum colourings (Definition 3.3.3), called wild colour-
ings in the package. We can check whether a given edge–coloured triangular surface has
a Grünbaum colouring with IsWildColouredSurface. We can also compute the local
symmetry (Definition 3.3.4) with the method LocalSymmetryOfEdges.

Each colour of a Grünbaum colouring can be represented by an involution. We can
access these involutions by the method ColourInvolutions. We can go in the converse
direction as well: Given three involutions, we can construct Grünbaum colourings with
specified local symmetry, with AllWildColouredSurfaces. This allows us to input
Dress–surfaces into the package (for details, compare the end of Subsection 10.1.1).

10.2 Frequently used features

Section 10.1 primarily dealt with the notation and basic functionality of the GAP–package
SimplicialSurfaces ([13]). In this section, we explore several features that are quite
useful in practice.

• Subsection 10.2.1 presents the surface library of the package. It allows the user to
directly work with several surface examples and to test theories about them.

• Subsection 10.2.2 covers both isomorphism testing and automorphism computa-
tion. They rely on Nauty by McKay and Piperno ([52]).

• Subsection 10.2.3 explains how to draw nets of surfaces into the plane, according
to certain specifications.

10.2.1 Surface Library

In many cases, a well–chosen counterexample inspires a lot of progress. Unfortunately,
finding such an example is often difficult. The surface library within the package
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SimplicialSurfaces ameliorates this problem by defining several lists of surfaces that
can be used to test theories against.

These lists can be used in two mayor ways:

1. As a list of surfaces that can be filtered according to certain criteria. The method
is AllPolygonalComplexes.

2. As a classification of surfaces with certain properties.

Most of the surfaces in the package are part of a classification. Currently, there are three
classifications:

• All platonic solids (AllPlatonicSolids).

• All simplicial spheres without three waists (i. e. vertex–edge–paths with three
edges that are not all incident to the same face) and at most 28 faces. They can
be called with AllSimplicialSpheres.
This classification was carried out in [56] and [65] for simplicial spheres. For the
formalism of planar graphs, the methods for the classification already appeared in
[19].

• All geodesic self–dual surfaces with d < 10 (classified in Chapter 9), as long as
they are polygonal complexes. The method is AllGeodesicSelfDualSurfaces.

10.2.2 Isomorphisms and automorphisms

It is a common question whether two given surfaces are “the same”. In a software
package, the notion of equality is usually too strict, since the labels of vertices, edges,
and faces might differ depending on the methods that produced them. Thus, we care
about isomorphisms.

It is possible to encode the incidence structure of a polygonal complex as a graph
(consult the package documentation in [13] for details). Then, we can use Nauty ([52])
to check for isomorphism with IsIsomorphic. This description also allows us to compute
the automorphism group of a polygonal complex efficiently (with AutomorphismGroup).

The package SimplicialSurfaces also allows the user to reference the action of
the automorphism group on vertices, edges, and faces separately, by methods such as
AutomorphismGroupOnVertices.

10.2.3 Surface Drawing

A big restriction of GAP is its lack of visualisation. It is a console program, which makes
manipulation of combinatorial surfaces (that are visual in many ways) complicated. To
work around this limitation, the package SimplicialSurfaces contains a method to
construct nets of polygonal surfaces (with chosen edge lengths).

These nets can be customised according to certain criteria (like colours and labels)
and are outputted as TEX–file in the TikZ–format ([68]). A comprehensive introduction
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into the capabilities of the drawing method can be found in the package documentation
([13]).

As an example, we construct a net of the octahedron.

gap> oct := Octahedron();
simplicial surface (6 vertices, 12 edges, and 8 faces)
gap> pr := DrawSurfaceToTikz( oct, "Octahedron_example" );;

This code writes a file Octahedron example.tex that contains the image in Figure 10.1.
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Figure 10.1: Net of an octahedron, computed in the package

To exemplify the possible customisations, we

1. Change the size of the image.

2. Change the colour of the vertices.

3. Change the labels of the faces.

4. Change a few edge lengths.

The code of this example is explained in detail in the package documentation ([13]).

gap> pr.scale := 3;;
gap> pr.vertexColours := "green";;
gap> pr.faceLabels := ["I","II","III","IV","V","VI","VII","VIII"];;
gap> pr.edgeLengths := [1,1,1,1,1.5,1.5,1,1.5,1,1.5,1,1];;
gap> Unbind( pr.angles );
gap> DrawSurfaceToTikz( oct, "Octahedron_reshaped", pr );;

The result of these changes is shown in Figure 10.2. The package recomputed the net
completely to avoid intersections.
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Figure 10.2: Modified net of an octahedron, computed in the package

10.3 Flexible usage
In Section 10.1, we explored basic notation and elementary usage of the GAP–package
SimplicialSurfaces ([13]). In Section 10.2, we explored several helpful features that
can be used immediately.

All of these have a fundamentally static nature: There is a clearly defined use–case to
which a potential user has to adapt. In many applications, more flexibility is needed and
the package aims to accommodate this sort of application as well. However, this requires
a trade–off: To allow greater flexibility, the individual methods become less impressive
in their own right (since it falls to the user to combine them into something greater).

Currently, there are two main parts of the package that are built with this kind of
flexibility in mind:

• Subsection 10.3.1 presents methods to navigate in a polygonal complex. This
includes movement to adjacent structures as well as localising specific structures
that one is interested in.

• Subsection 10.3.2 presents methods to modify surfaces. These methods can be
used as a toolbox to construct arbitrary modifications.

10.3.1 Navigation in a surface

In this subsection, we present methods to obtain detailed knowledge about a polygonal
complex. We work with two main scenarios. In the first one, we start with a subconfig-
uration of the polygonal complex and explore its neighbourhood. In the second one, we
find subconfigurations with certain properties.

There are three ways to explore the neighbourhood of a subconfiguration:
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• We can move along edges. To do so, we need to check adjacency of vertices
(IsVerticesAdjacent), and, given a vertex and incident edge, find the other ver-
tex incident to the edge (OtherVertexOfEdge).

• We can move within faces. In general, this can be done along the boundary
(OtherEdgeOfVertexInFace). If the face is a triangle, we can also go from a ver-
tex to the “opposite” edge (OppositeEdgeOfVertexInTriangle) and vice versa
(OppositeVertexOfEdgeInTriangle).

• We can move between adjacent faces. For that, we need to check adjacency of
faces (IsFacesAdjacent), and to find adjacent faces (NeighbourFacesByEdge).

These methods are basic but they allow rather flexible movement within a polygonal
complex. In contrast, the methods to localise subconfigurations usually require a bit
more setup. They can find:

• All adjacent vertices fulfilling certain properties (EdgesWithVertexProperties
and AdjacentVerticesWithProperties).

• All faces whose vertices fulfil certain properties (FacesWithVertexProperties).

• All faces whose edges fulfil certain properties (FacesWithEdgeProperties).

All of these descriptions seem kind of vague since they contain the phrase “certain
properties”. This vagueness is part of the design. While it is possible to use predefined
properties (e. g. the degree of a vertex, or whether an edge is ramified), the strength of
these methods becomes apparent when called with custom tailored properties

In GAP, any user can define their own GAP–functions. The “properties” of these meth-
ods are just GAP–functions satisfying a certain form. Thus, any property that can be
computed from a polygonal complex and a vertex (or an edge), can be used to localise
subconfigurations.

10.3.2 Modifying surfaces

In some cases, it is sufficient to work with a set of pre–defined surfaces. In many others,
however, modifying surfaces is a very important part of the work. Unfortunately, there
are too many different modifications to implement them all. Thus, it is necessary that
a user defines these modifications by themselves.

A naive approach is to modify the incidence structure of a polygonal complex directly.
While this works (and results in fastest computations), it is usually quite tedious and
error–prone. This makes it infeasible for situations in which one wants to quickly test a
theory without committing too much time to it.

The solution of the package SimplicialSurfaces is defining a toolbox for surface
modifications. This is a small set of methods from which almost all other modifications
can be constructed. More concretely, these building blocks are:
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• Split the surface along a vertex–edge–path with SplitVertexEdgePath. As special
cases, we can also split along an edge (SplitEdge) or at a vertex (SplitVertex).
For the details of splitting, we refer to the manual of the package ([13]).

• Remove faces (RemoveFaces) or construct a subsurface (SubsurfaceByFaces).

• Combine two surfaces disjointly with DisjointUnion. This usually requires a
relabelling of one of them.

• Join one (or two) surfaces along a vertex–edge–path with JoinVertexEdgePaths
(inverse to the splitting operation). As a special case, the method JoinBoundaries
joins two surfaces along their boundaries. For more details, we refer to the package
documentation ([13]).

In the remainder of this chapter, we construct the vertex–splitting operation from
Definition 8.1.1 with this toolbox. We follow the intuitive description from the start of
Section 8.1:

1. Choose two edges that are incident to the same vertex.

2. Cut along these edges. This leaves a hole with four boundary edges.

3. Insert two triangles into the hole.

We write a GAP–function that takes a surface surf and two edges e1 and e2.

gap> VertexSplit := function( surf, e1, e2 )
> ...
> end;;

It remains to fill in the body of this method. We do so in several steps.

1. Input validation:
Depending on the context, we want to check whether the input is valid. Checking
whether surf is a surface is easy.

gap> if not IsPolygonalSurface(surf) then
> return fail;
> fi;

There should be exactly one vertex that is incident to both edges. Additionally,
this should be an inner vertex.

gap> incVerts := Intersection( VerticesOfEdge(surf,e1),
> VerticesOfEdge(surf,e2));
gap> if Length(incVerts) <> 1 then
> return fail;
> fi;
gap> if not IsInnerVertex(surf, incVerts[1]) then
> return fail;
> fi;
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2. Cut along the edges:
Since there is exactly one vertex incident to both edges, there is exactly one vertex–
edge–path with two edges that contains both of them.

gap> path := VertexEdgePathByEdges( surf, [e1,e2] );

Next, we cut along this path.
gap> cut := SplitEdgePath( surf, path );
gap> pathA := cut[2][1][1];
gap> pathB := cut[2][2][1];

Here, pathA and pathB are the two vertex–edge–paths that result from the split.

3. Construct new triangles:
We want to fill in two triangles into the resulting hole. “Filling in” corresponds
to joining two surfaces. Thus, we have to construct a polygonal surface from two
triangles, corresponding to the following illustration:
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gap> fill := SimplicialSurfaceByDownwardIncidence(
> [[1,2],[2,3],[3,4],[1,4],[2,4]],[[1,4,5],[2,3,5]]);

4. Combine the surfaces:
We start by forming the disjoint union of the two surfaces.

gap> res := DisjointUnion( cut[1], fill );
gap> union := res[1];
gap> shift := res[2];

Then, we combine pathA with the vertex–edge–path along the (former) edges 1
and 2 of fill.

gap> fillA := VertexEdgePathByEdges(union, [1+shift,2+shift]);
gap> holeA := VertexEdgePathByEdges(union, EdgesAsList(pathA));
gap> join := JoinVertexEdgePaths(union, holeA, fillA)[1];

Next, we combine pathB with the vertex–edge–path along the (former) edges 4
and 3 of fill.

gap> fillB := VertexEdgePathByEdges(join, [4+shift,3+shift]);
gap> holeB := VertexEdgePathByEdges(join, EdgesAsList(pathB));
gap> final := JoinVertexEdgePaths(join, holeB, fillB)[1];

In combination, we obtain the full method.
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gap> VertexSplit := function( surf, e1, e2 )
> local invVerts, path, cut, pathA, pathB, fill, res,
> union, shift, fillA, holeA, join, fillB, holeB, final;
> # Input validation
> if not IsPolygonalSurface(surf) then
> return fail;
> fi;
> incVerts := Intersection( VerticesOfEdge(surf,e1),
> VerticesOfEdge(surf,e2));
> if Length(incVerts) <> 1 then
> return fail;
> fi;
> if not IsInnerVertex(surf, incVerts[1]) then
> return fail;
> fi;
> # Cut along the edges
> path := VertexEdgePathByEdges( surf, [e1,e2] );
> cut := SplitEdgePath( surf, path );
> pathA := cut[2][1][1];
> pathB := cut[2][2][1];
> # Construct new triangles
> fill := SimplicialSurfaceByDownwardIncidence(
> [[1,2],[2,3],[3,4],[1,4],[2,4]],[[1,4,5],[2,3,5]]);
> # Combine the surfaces
> res := DisjointUnion( cut[1], fill );
> union := res[1];
> shift := res[2];
> fillA := VertexEdgePathByEdges(union, [1+shift,2+shift]);
> holeA := VertexEdgePathByEdges(union, EdgesAsList(pathA));
> join := JoinVertexEdgePaths(union, holeA, fillA)[1];
> fillB := VertexEdgePathByEdges(join, [4+shift,3+shift]);
> holeB := VertexEdgePathByEdges(join, EdgesAsList(pathB));
> final := JoinVertexEdgePaths(join, holeB, fillB)[1];
> return final;
> end;
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[46] Michal Kotrbč́ık, Naoki Matsumoto, Bojan Mohar, Atsuhiro Nakamoto, Kenta
Noguchi, Kenta Ozeki, and Andrej Vodopivec. Grünbaum colorings of even tri-
angulations on surfaces. Journal of Graph Theory, 87(4):475–491, 2018.

[47] Dmitry Kozlov. Combinatorial Algebraic Topology, volume 21. Springer-Verlag
Berlin Heidelberg, 01 2008.

[48] S. Lawrencenko, M. N. Vyalyi, and L. V. Zgonnik. Grünbaum coloring and its
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2008.

[50] Saunders MacLane. Categories for the Working Mathematician. Springer-Verlag,
New York, 1971. Graduate Texts in Mathematics, Vol. 5.

[51] Wilhelm Magnus. Noneuclidean Tesselations and Their Groups. Academic Press,
New York, 1974.

[52] Brendan D. McKay and Adolfo Piperno. Practical graph isomorphism, {II}. Jour-
nal of Symbolic Computation, 60(0):94 – 112, 2014.

[53] Rene K. Mueller. Geodesic octahedron l3. https://simplydifferently.
org/Present/Data/Geodesic_Polyhedra/sphere/05.3.png, 2012. visited at
21.10.2019.

[54] Peter M. Neumann, Gabrielle A. Stoy, and Edward C. Thompson. Groups and
geometry. Oxford Science Publications. The Clarendon Press, Oxford University
Press, New York, 1994.

[55] I. Novik. A note on geometric embeddings of simplicial complexes in a euclidean
space. Discrete & Computational Geometry, 23(2):293–302, Feb 2000.

[56] Wilhelm Plesken, Alice C. Niemeyer, Daniel Robertz, and Ansgar W. Strzelczyk.
Simplicial Surfaces of Congruent Triangles. in preparation, 2019.

[57] H. Rademacher and E. Steinitz. Vorlesungen über die Theorie der Polyeder: unter
Einschluß der Elemente der Topologie. Grundlehren der mathematischen Wis-
senschaften. Springer Berlin Heidelberg, 2013.

[58] Joseph Rotman. Covering complexes with applications to algebra. Rocky Mountain
J. Math., 3(4):641–674, 1973.

[59] Joseph Rotman. An Introduction to Algebraic Topology. Graduate Texts in Math-
ematics. Springer New York, 1998.

228

https://simplydifferently.org/Present/Data/Geodesic_Polyhedra/sphere/05.3.png
https://simplydifferently.org/Present/Data/Geodesic_Polyhedra/sphere/05.3.png


[60] H. Seifert and W. Threlfall. A Textbook of Topology. Pure and Applied Mathematics.
Elsevier Science, 1980.

[61] I.M. Singer and J.A. Thorpe. Lecture Notes on Elementary Topology and Geometry.
Springer–Verlag New York, 1967.

[62] E.H. Spanier. Algebraic Topology. Springer New York, 2012.

[63] J. Stillwell. Classical Topology and Combinatorial Group Theory. Graduate Texts
in Mathematics. Springer, 1993.

[64] D.J. Struik. Lectures on Classical Differential Geometry. Addison-Wesley series in
mathematics. Addison-Wesley Publishing Company, 1961.

[65] Ansgar Werner Strzelczyk. Simpliziale Flächen aus kongruenten Dreiecken: kom-
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hexagonal slice, 176
homeomorphism, 83
homogeneous, 22
homomorphism

action, 78

incidence
Dress–surface, 42
polygonal complex, 31
twisted polygonal complex, 24

incident
graph, 55

induced subcomplex, 22
induced topology, 84
inner degree, 129
inner edge

Dress–surface, 44
polygonal complex, 36
twisted polygonal complex, 27

inner vertex
polygonal complex, 40
twisted polygonal complex, 30

interior point, 87
intersection

subgraphs, 56
interval

cyclic, 62
isomorphism, 19

join, 142
Jordan–curve, 85

lattice, 142
join, 142
meet, 142
property, 142

lift, 203
link, 105
local chamber colouring, 98
local orientation map, 97
local symmetry, 60

meet, 142
morphism

dimension–preserving, 21
Dress, 44
Dress covering, 45
extended, 75
graph, 56
polygonal, 33
polygonal shadow, 48
polygonal twilight, 48
simplicial, 21
simplicial shadow, 21
simplicial twilight, 21
twisted polygonal, 25

natural inclusion, 22
neighbourhood

defect, 149
neighbours, 149
net, 135
non–repeating

edge–face–path, 37
strong path, 28

normal closure, 14
normaliser, 14

offset, 170
orientable

Dress–surface, 99
polygonal surface, 97
twisted polygonal surface, 98

orientation
local orientation map, 97

origami
hexagonal, 141

path
edge–face, 37
strong, 28
strong polygon, 28
strong umbrella, 29
topology, 85
vertex–edge, 92
weak, 90

path space, 85
path–connected, 85
path–sum
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edge–face–path, 38
strong path, 28

point
boundary, 87
interior, 87

polygon path, 127
polygonal complex, 31

category, 34
edges, 31
faces, 31
flag, 34
incidence, 31
polygonal surface, 40
triangular complex, 33
twisted, 24
vertices, 31

polygonal morphism, 33
shadow, 48
twilight, 48
twisted, 25

polygonal shadow morphism, 48
polygonal surface, 40

category, 40
twisted, 30

polygonal twilight morphism, 48
power set, 13
proper colouring, 56
property

heritable, 140
property lattice, 142

quotient topology, 85

ramified edge
polygonal complex, 36
twisted polygonal complex, 27

ramified vertex
polygonal complex, 40
twisted polygonal complex, 30

regular extension category, 153
regular vertex, 74
representative

type, 183

SB–surface, 70

extended, 74
semi–direct product, 14
sequence

cyclic, 64
simplicial

morphism, 21
shadow morphism, 21
twilight morphism, 21

simplicial complex, 21
category, 22
dimension, 22
finite, 21
homogeneous, 22
subcomplex, 22

simplicial surface, 40
456, 148

single boundary surface, 70
singularity, 73
spherical, 53
staircase, 163
staircase area, 173, 187, 190
standard n–gon, 84
strong path, 28

closed, 28
non–repeating, 28
polygon path, 28
sum, 28
umbrella path, 29

strong polygon path, 28
strong umbrella path, 29

maximal, 29
strongly connected

Dress–surface, 93
polygonal complex, 92
twisted polygonal complex, 90

subcategory, 19
subcomplex, 22
subgraph, 55

intersection, 56
subspace topology, 84
surface

combinatorial, 51
extended combinatorial, 74
twisted polygonal, 30
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surface subgroup, 81
symmetric group, 14

taurus composition, 31
tight, 170

v–tight, 170
topological realisation, 88
topological space, 83
topology, 83

disjoint union, 84
induced, 84
quotient, 85
subspace, 84

transition group, 135
transition map, 134
triangle group, 80

geodesic, 193
triangular, 53
triangular complex, 33

category, 34
vertex–faithful, 47

twilight morphism
extended polygonal, 75

twisted polygon flock, 88
twisted polygonal complex, 24

category, 26
chambers, 24
edges, 24
faces, 24
incidence, 24
topological realisation, 88
vertices, 24

twisted polygonal morphism, 25
twisted polygonal surface, 30

category, 31
twisted topological polygon, 86
type, 183

representative, 183

umbrella–path, 38
maximal, 38

uncollapsed, 197

vertex
boundary

polygonal complex, 40
twisted polygonal complex, 30

chaotic
polygonal complex, 40
twisted polygonal complex, 30

critical, 105
Dress–surface, 42
graph, 55
inner

polygonal complex, 40
twisted polygonal complex, 30

neighbours, 149
polygonal complex, 31
ramified

polygonal complex, 40
twisted polygonal complex, 30

regular, 74
twisted polygonal complex, 24

vertex colouring, 57
vertex extension, 152
vertex split, 145
vertex–edge–graph, 56
vertex–edge–path, 92
vertex–faithful, 47
voltage

corner voltage assignment, 203
group, 203

waist–length, 170
weak path, 90
weakly adjacent, 90
wild colouring, 59

local symmetry, 60
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